BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 29442184)

  • 41. Design and characterization of immobilized biocatalyst with lipase activity onto magnetic magnesium spinel nanoparticles: A novel platform for biocatalysis.
    Romero CM; Spuches FC; Morales AH; Perotti NI; Navarro MC; Gómez MI
    Colloids Surf B Biointerfaces; 2018 Dec; 172():699-707. PubMed ID: 30245295
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enzymatic interesterification of soybean oil and methyl stearate blends using lipase immobilized on magnetic Fe3O4/SBA-15 composites as a biocatalyst.
    Zang X; Xie W
    J Oleo Sci; 2014; 63(10):1027-34. PubMed ID: 25213444
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Stabilization of Lipase in Polymerized High Internal Phase Emulsions.
    Andler SM; Goddard JM
    J Agric Food Chem; 2018 Apr; 66(14):3619-3623. PubMed ID: 29582657
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enzyme encapsulation in magnetic chitosan-Fe3O4 microparticles.
    Costa-Silva TA; Marques PS; Souza CR; Said S; Oliveira WP
    J Microencapsul; 2015; 32(1):16-21. PubMed ID: 25198912
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Calix[4]arene tetracarboxylic acid-treated lipase immobilized onto metal-organic framework: Biocatalyst for ester hydrolysis and kinetic resolution.
    Ozyilmaz E; Ascioglu S; Yilmaz M
    Int J Biol Macromol; 2021 Apr; 175():79-86. PubMed ID: 33548316
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Immobilized lysozyme onto 1,2,3,4-butanetetracarboxylic (BTCA)-modified magnetic cellulose microsphere for improving bio-catalytic stability and activities.
    Xue F; Chen Q; Li Y; Liu E; Li D
    Enzyme Microb Technol; 2019 Dec; 131():109425. PubMed ID: 31615685
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Candida antarctica lipase B chemically immobilized on epoxy-activated micro- and nanobeads: catalysts for polyester synthesis.
    Chen B; Hu J; Miller EM; Xie W; Cai M; Gross RA
    Biomacromolecules; 2008 Feb; 9(2):463-71. PubMed ID: 18197630
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Preparation and characterization of gelatin hydrogel support for immobilization of Candida rugosa lipase.
    Pulat M; Akalin GO
    Artif Cells Nanomed Biotechnol; 2013 Jun; 41(3):145-51. PubMed ID: 22812721
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis of novel magnetic cellulose-chitosan composite microspheres and their application in laccase immobilization.
    Peng S; Meng HC; Zhou L; Chang J
    J Nanosci Nanotechnol; 2014 Sep; 14(9):7010-4. PubMed ID: 25924363
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Taguchi design-assisted immobilization of Candida rugosa lipase onto a ternary alginate/nanocellulose/montmorillonite composite: Physicochemical characterization, thermal stability and reusability studies.
    Mohd Hussin FNN; Attan N; Wahab RA
    Enzyme Microb Technol; 2020 May; 136():109506. PubMed ID: 32331714
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Candida rugosa Lipase Immobilized onto Acid-Functionalized Multi-walled Carbon Nanotubes for Sustainable Production of Methyl Oleate.
    Che Marzuki NH; Mahat NA; Huyop F; Buang NA; Wahab RA
    Appl Biochem Biotechnol; 2015 Oct; 177(4):967-84. PubMed ID: 26267406
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Immobilization of cellulase on thermo-sensitive magnetic microspheres: improved stability and reproducibility.
    Han J; Rong J; Wang Y; Liu Q; Tang X; Li C; Ni L
    Bioprocess Biosyst Eng; 2018 Jul; 41(7):1051-1060. PubMed ID: 29654356
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Facile synthesis of oxidic PEG-modified magnetic polydopamine nanospheres for Candida rugosa lipase immobilization.
    Hou C; Zhu H; Li Y; Li Y; Wang X; Zhu W; Zhou R
    Appl Microbiol Biotechnol; 2015 Feb; 99(3):1249-59. PubMed ID: 25117546
    [TBL] [Abstract][Full Text] [Related]  

  • 54. One-pot solvothermal synthesis of highly water-dispersible size-tunable functionalized magnetite nanocrystal clusters for lipase immobilization.
    Zhu H; Hou C; Li Y; Zhao G; Liu X; Hou K; Li Y
    Chem Asian J; 2013 Jul; 8(7):1447-54. PubMed ID: 23616374
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Study of Molecular Conformation and Activity-Related Properties of Lipase Immobilized onto Core-Shell Structured Polyacrylic Acid-Coated Magnetic Silica Nanocomposite Particles.
    Esmaeilnejad-Ahranjani P; Kazemeini M; Singh G; Arpanaei A
    Langmuir; 2016 Apr; 32(13):3242-52. PubMed ID: 26986897
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hydroxyapatite hierarchically nanostructured porous hollow microspheres: rapid, sustainable microwave-hydrothermal synthesis by using creatine phosphate as an organic phosphorus source and application in drug delivery and protein adsorption.
    Qi C; Zhu YJ; Lu BQ; Zhao XY; Zhao J; Chen F; Wu J
    Chemistry; 2013 Apr; 19(17):5332-41. PubMed ID: 23460360
    [TBL] [Abstract][Full Text] [Related]  

  • 57.
    Li Y; Ruan Z; Zheng M; Deng Q; Zhang S; Zheng C; Tang H; Huang F; Shi J
    RSC Adv; 2018 Apr; 8(26):14229-14236. PubMed ID: 35540739
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metal-Organic Frameworks Conjugated Lipase with Enhanced Bio-catalytic Activity and Stability.
    Zou B; Zhang L; Xia J; Wang P; Yan Y; Wang X; Adesanya IO
    Appl Biochem Biotechnol; 2020 Sep; 192(1):132-145. PubMed ID: 32323142
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reversible immobilization of Candida rugosa lipase on fibrous polymer grafted and sulfonated p(HEMA/EGDMA) beads.
    Yakup Arica M; Soydogan H; Bayramoglu G
    Bioprocess Biosyst Eng; 2010 Feb; 33(2):227-36. PubMed ID: 19350276
    [TBL] [Abstract][Full Text] [Related]  

  • 60. pH memory of immobilized lipase for (+/-)-menthol resolution in ionic liquid.
    Ren MY; Bai S; Zhang DH; Sun Y
    J Agric Food Chem; 2008 Apr; 56(7):2388-91. PubMed ID: 18338863
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.