BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 29442184)

  • 61. Improvement of the activation of lipase from Candida rugosa following physical and chemical immobilization on modified mesoporous silica.
    Wang C; Li Y; Zhou G; Jiang X; Xu Y; Bu Z
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():261-9. PubMed ID: 25491828
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Synthesis of Benzyl Acetate Catalyzed by Lipase Immobilized in Nontoxic Chitosan-Polyphosphate Beads.
    Melo ADQ; Silva FFM; Dos Santos JCS; Fernández-Lafuente R; Lemos TLG; Dias Filho FA
    Molecules; 2017 Dec; 22(12):. PubMed ID: 29215558
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Protein-Coated Microcrystals from Candida rugosa Lipase: Its Immobilization, Characterization, and Application in Resolution of Racemic Ibuprofen.
    Huang S; Li X; Xu L; Ke C; Zhang R; Yan Y
    Appl Biochem Biotechnol; 2015 Sep; 177(1):36-47. PubMed ID: 26137875
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Assessment of the efficiency and stability of enzymatic membrane reaction utilizing lipase covalently immobilized on a functionalized hybrid membrane.
    Rezaie H; Kajani AA; Jafarian F; Asgari S; Taheri-Kafrani A; Bordbar AK
    J Biotechnol; 2024 May; 387():23-31. PubMed ID: 38548020
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Studies on immobilized lipase in hydrophobic sol-gel.
    Soares CM; dos Santos OA; de Castro HF; de Moraes FF; Zanin GM
    Appl Biochem Biotechnol; 2004; 113-116():307-19. PubMed ID: 15054215
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The Synthesis of Size-Adjustable Superparamagnetism Fe
    Xu C; Lu X; Dai H
    Nanoscale Res Lett; 2017 Dec; 12(1):234. PubMed ID: 28363235
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Hydrothermal synthesis of 3D hollow porous Fe3O4 microspheres towards catalytic removal of organic pollutants.
    Wang X; Huang H; Li G; Liu Y; Huang J; Yang DP
    Nanoscale Res Lett; 2014; 9(1):648. PubMed ID: 25520596
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Ternary biogenic silica/magnetite/graphene oxide composite for the hyperactivation of Candida rugosa lipase in the esterification production of ethyl valerate.
    Jacob AG; Wahab RA; Mahat NA
    Enzyme Microb Technol; 2021 Aug; 148():109807. PubMed ID: 34116744
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Direct binding and characterization of lipase onto magnetic nanoparticles.
    Huang SH; Liao MH; Chen DH
    Biotechnol Prog; 2003; 19(3):1095-100. PubMed ID: 12790688
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Covalent immobilization of porcine pancreatic lipase on carboxyl-activated magnetic nanoparticles: characterization and application for enzymatic inhibition assays.
    Zhu YT; Ren XY; Liu YM; Wei Y; Qing LS; Liao X
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():278-85. PubMed ID: 24656379
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Immobilization of hydrophobic lipase derivatives on to organic polymer beads.
    Basri M; Ampon K; Yunus WM; Razak CN; Salleh AB
    J Chem Technol Biotechnol; 1994 Jan; 59(1):37-44. PubMed ID: 7764496
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Immobilization of Candida antarctica Lipase B on Magnetic Poly(Urea-Urethane) Nanoparticles.
    Chiaradia V; Soares NS; Valério A; de Oliveira D; Araújo PH; Sayer C
    Appl Biochem Biotechnol; 2016 Oct; 180(3):558-575. PubMed ID: 27184256
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups.
    Chiou SH; Wu WT
    Biomaterials; 2004 Jan; 25(2):197-204. PubMed ID: 14585707
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Immobilization of lipase on carboxylic acid-modified silica nanoparticles for olive oil glycerolysis.
    Singh AK; Mukhopadhyay M
    Bioprocess Biosyst Eng; 2018 Jan; 41(1):115-127. PubMed ID: 29043450
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Immobilization of pectinase onto Fe3O4@SiO2-NH2 and its activity and stability.
    Fang G; Chen H; Zhang Y; Chen A
    Int J Biol Macromol; 2016 Jul; 88():189-95. PubMed ID: 27037054
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Comparison of covalent and physical immobilization of lipase in gigaporous polymeric microspheres.
    Wang W; Zhou W; Li J; Hao D; Su Z; Ma G
    Bioprocess Biosyst Eng; 2015 Nov; 38(11):2107-15. PubMed ID: 26334985
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Synthesis of the Fe3O4@SiO2@SiO2-Tb(PABA)3 luminomagnetic microspheres.
    Sun DH; Lu P; Zhang JL; Liu YL; Ni JZ
    J Nanosci Nanotechnol; 2011 Nov; 11(11):9774-9. PubMed ID: 22413292
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Effect of Candida antarctica lipase B immobilization on the porous structure of the carrier.
    Miletić N; Vuković Z; Nastasović A; Loos K
    Macromol Biosci; 2011 Nov; 11(11):1537-43. PubMed ID: 21842505
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Superparamagnetic polymer emulsion particles from a soap-free seeded emulsion polymerization and their application for lipase immobilization.
    Cui Y; Chen X; Li Y; Liu X; Lei L; Zhang Y; Qian J
    Appl Biochem Biotechnol; 2014 Jan; 172(2):701-12. PubMed ID: 24114322
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Characterization and immobilization of trypsin on tannic acid modified Fe3O4 nanoparticles.
    Atacan K; Özacar M
    Colloids Surf B Biointerfaces; 2015 Apr; 128():227-236. PubMed ID: 25686792
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.