These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 29442507)

  • 1. Functional Insights Revealed by the Kinetic Mechanism of CRISPR/Cas9.
    Raper AT; Stephenson AA; Suo Z
    J Am Chem Soc; 2018 Feb; 140(8):2971-2984. PubMed ID: 29442507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordinated Actions of Cas9 HNH and RuvC Nuclease Domains Are Regulated by the Bridge Helix and the Target DNA Sequence.
    Babu K; Kathiresan V; Kumari P; Newsom S; Parameshwaran HP; Chen X; Liu J; Qin PZ; Rajan R
    Biochemistry; 2021 Dec; 60(49):3783-3800. PubMed ID: 34757726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage.
    Jiang F; Taylor DW; Chen JS; Kornfeld JE; Zhou K; Thompson AJ; Nogales E; Doudna JA
    Science; 2016 Feb; 351(6275):867-71. PubMed ID: 26841432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bidirectional Degradation of DNA Cleavage Products Catalyzed by CRISPR/Cas9.
    Stephenson AA; Raper AT; Suo Z
    J Am Chem Soc; 2018 Mar; 140(10):3743-3750. PubMed ID: 29461055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the structural dynamics of the CRISPR-Cas9 RNA-guided DNA-cleavage system by coarse-grained modeling.
    Zheng W
    Proteins; 2017 Feb; 85(2):342-353. PubMed ID: 27936513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational control of DNA target cleavage by CRISPR-Cas9.
    Sternberg SH; LaFrance B; Kaplan M; Doudna JA
    Nature; 2015 Nov; 527(7576):110-3. PubMed ID: 26524520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time observation of Cas9 postcatalytic domain motions.
    Wang Y; Mallon J; Wang H; Singh D; Hyun Jo M; Hua B; Bailey S; Ha T
    Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33443184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic characterization of Cas9 enzymes.
    Liu MS; Gong S; Yu HH; Taylor DW; Johnson KA
    Methods Enzymol; 2019; 616():289-311. PubMed ID: 30691648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leveraging QM/MM and Molecular Dynamics Simulations to Decipher the Reaction Mechanism of the Cas9 HNH Domain to Investigate Off-Target Effects.
    Maghsoud Y; Jayasinghe-Arachchige VM; Kumari P; Cisneros GA; Liu J
    J Chem Inf Model; 2023 Nov; 63(21):6834-6850. PubMed ID: 37877218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1 (Cas12a).
    Singh D; Mallon J; Poddar A; Wang Y; Tippana R; Yang O; Bailey S; Ha T
    Proc Natl Acad Sci U S A; 2018 May; 115(21):5444-5449. PubMed ID: 29735714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Vitro Reconstitution and Crystallization of Cas9 Endonuclease Bound to a Guide RNA and a DNA Target.
    Anders C; Niewoehner O; Jinek M
    Methods Enzymol; 2015; 558():515-537. PubMed ID: 26068752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition Mechanism of an Anti-CRISPR Suppressor AcrIIA4 Targeting SpyCas9.
    Yang H; Patel DJ
    Mol Cell; 2017 Jul; 67(1):117-127.e5. PubMed ID: 28602637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineered CRISPR/Cas9 enzymes improve discrimination by slowing DNA cleavage to allow release of off-target DNA.
    Liu MS; Gong S; Yu HH; Jung K; Johnson KA; Taylor DW
    Nat Commun; 2020 Jul; 11(1):3576. PubMed ID: 32681021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleic Acid-Dependent Conformational Changes in CRISPR-Cas9 Revealed by Site-Directed Spin Labeling.
    Vazquez Reyes C; Tangprasertchai NS; Yogesha SD; Nguyen RH; Zhang X; Rajan R; Qin PZ
    Cell Biochem Biophys; 2017 Jun; 75(2):203-210. PubMed ID: 27342128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structures of Neisseria meningitidis Cas9 Complexes in Catalytically Poised and Anti-CRISPR-Inhibited States.
    Sun W; Yang J; Cheng Z; Amrani N; Liu C; Wang K; Ibraheim R; Edraki A; Huang X; Wang M; Wang J; Liu L; Sheng G; Yang Y; Lou J; Sontheimer EJ; Wang Y
    Mol Cell; 2019 Dec; 76(6):938-952.e5. PubMed ID: 31668930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and functional insights into the
    Zuo Z; Zolekar A; Babu K; Lin VJ; Hayatshahi HS; Rajan R; Wang YC; Liu J
    Elife; 2019 Jul; 8():. PubMed ID: 31361218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9.
    Sternberg SH; Redding S; Jinek M; Greene EC; Doudna JA
    Nature; 2014 Mar; 507(7490):62-7. PubMed ID: 24476820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA.
    Fonfara I; Richter H; Bratovič M; Le Rhun A; Charpentier E
    Nature; 2016 Apr; 532(7600):517-21. PubMed ID: 27096362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein-Mutation-Induced Conformational Changes of the DNA and Nuclease Domain in CRISPR/Cas9 Systems by Molecular Dynamics Simulations.
    Ray A; Di Felice R
    J Phys Chem B; 2020 Mar; 124(11):2168-2179. PubMed ID: 32079396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. STRUCTURAL BIOLOGY. A Cas9-guide RNA complex preorganized for target DNA recognition.
    Jiang F; Zhou K; Ma L; Gressel S; Doudna JA
    Science; 2015 Jun; 348(6242):1477-81. PubMed ID: 26113724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.