These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
63 related articles for article (PubMed ID: 29442687)
1. Analysis of Laser Injection Condition and Electrical Properties in Local BSF for Laser Fired Contact c-Si Solar Cell Applications. Park C; Choi G; Balaji N; Ju M; Lee YJ; Lee H; Yi J J Nanosci Nanotechnol; 2018 Jul; 18(7):5013-5019. PubMed ID: 29442687 [TBL] [Abstract][Full Text] [Related]
2. Analysis of Resistance and Surface Recombination Velocities by Contact Coverage for Optimizing Electrical Loss in c-Si Local Back Contact. Park C; Ryu K; Balaji N; Lee S; Kim J; Ju M; Lee YJ; Lee H; Yi J J Nanosci Nanotechnol; 2015 Jun; 15(6):4398-402. PubMed ID: 26369055 [TBL] [Abstract][Full Text] [Related]
3. Crystalline Fraction and Doping Concentration Effect on Heterojunction Solar Cells n-Doped µc-Si:H Back Surface Field Layer. Kim S; Shin C; Balaji N; Yi J J Nanosci Nanotechnol; 2015 Mar; 15(3):2294-9. PubMed ID: 26413655 [TBL] [Abstract][Full Text] [Related]
4. Influence of n-doped μc-Si:H back surface field layer with micro growth in crystalline-amorphous silicon heterojunction solar cells. Kim S; Dao VA; Shin C; Balaji N; Yi J J Nanosci Nanotechnol; 2014 Dec; 14(12):9258-62. PubMed ID: 25971047 [TBL] [Abstract][Full Text] [Related]
5. Impact of HfO₂ as a Passivation Layer in the Solar Cell Efficiency Enhancement in Passivated Emitter Rear Cell Type. Jha RK; Singh P; Goswami M; Singh BR J Nanosci Nanotechnol; 2020 Jun; 20(6):3718-3723. PubMed ID: 31748069 [TBL] [Abstract][Full Text] [Related]
6. Realization of 13.6% Efficiency on 20 μm Thick Si/Organic Hybrid Heterojunction Solar Cells via Advanced Nanotexturing and Surface Recombination Suppression. He J; Gao P; Liao M; Yang X; Ying Z; Zhou S; Ye J; Cui Y ACS Nano; 2015 Jun; 9(6):6522-31. PubMed ID: 26047260 [TBL] [Abstract][Full Text] [Related]
7. High-Efficiency p-Type Si Solar Cell Fabricated by Using Firing-Through Aluminum Paste on the Cell Back Side. Wu G; Liu Y; Liu M; Zhang Y; Zhu P; Wang M; Zheng G; Wang G; Wang D Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31627292 [TBL] [Abstract][Full Text] [Related]
8. Self-Organized Back Surface Field to Improve the Performance of Cu Song Y; Yao B; Li Y; Ding Z; Sun H; Zhang Z; Zhang L; Zhao H ACS Appl Mater Interfaces; 2019 Sep; 11(35):31851-31859. PubMed ID: 31313903 [TBL] [Abstract][Full Text] [Related]
9. Performance of Large Area n-TOPCon Solar Cells with Selective Poly-Si Based Passivating Contacts Prepared by PECVD Method. Liu Z; Guo C; Liu Y; Wang J; Su X; Wang Q Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399100 [TBL] [Abstract][Full Text] [Related]
10. Back EVA recycling from c-Si photovoltaic module without damaging solar cell via laser irradiation followed by mechanical peeling. Li X; Liu H; You J; Diao H; Zhao L; Wang W Waste Manag; 2022 Jan; 137():312-318. PubMed ID: 34837742 [TBL] [Abstract][Full Text] [Related]
11. All-back-contact neutral-colored transparent crystalline silicon solar cells enabling seamless modularization. Park J; Lee K; Lee J; Kim D; Lee M; Seo K Proc Natl Acad Sci U S A; 2024 Aug; 121(33):e2404684121. PubMed ID: 39110726 [TBL] [Abstract][Full Text] [Related]
12. All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency. Jeong S; McGehee MD; Cui Y Nat Commun; 2013; 4():2950. PubMed ID: 24335845 [TBL] [Abstract][Full Text] [Related]
13. Influence of Chemical Composition and Structure in Silicon Dielectric Materials on Passivation of Thin Crystalline Silicon on Glass. Calnan S; Gabriel O; Rothert I; Werth M; Ring S; Stannowski B; Schlatmann R ACS Appl Mater Interfaces; 2015 Sep; 7(34):19282-94. PubMed ID: 26281016 [TBL] [Abstract][Full Text] [Related]
14. Enhancement of laser-induced rear surface spallation by pyramid textured structures on silicon wafer solar cells. Du ZR; Palina N; Chen J; Aberle AG; Hoex B; Hong MH Opt Express; 2012 Nov; 20(23):A984-90. PubMed ID: 23326846 [TBL] [Abstract][Full Text] [Related]
15. Enhancement of laser-induced rear surface spallation by pyramid textured structures on silicon wafer solar cells. Du ZR; Palina N; Chen J; Aberle AG; Hoex B; Hong MH Opt Express; 2012 Nov; 20 Suppl 6():A984-90. PubMed ID: 23187675 [TBL] [Abstract][Full Text] [Related]
16. Optical and electrical study of core-shell silicon nanowires for solar applications. Li Z; Wang J; Singh N; Lee S Opt Express; 2011 Sep; 19 Suppl 5():A1057-66. PubMed ID: 21935248 [TBL] [Abstract][Full Text] [Related]
17. Comparison of thermal tissue effects induced by contact application of fiber guided laser systems. Janda P; Sroka R; Mundweil B; Betz CS; Baumgartner R; Leunig A Lasers Surg Med; 2003; 33(2):93-101. PubMed ID: 12913880 [TBL] [Abstract][Full Text] [Related]
18. Ultrathin, flexible organic-inorganic hybrid solar cells based on silicon nanowires and PEDOT:PSS. Sharma M; Pudasaini PR; Ruiz-Zepeda F; Elam D; Ayon AA ACS Appl Mater Interfaces; 2014 Mar; 6(6):4356-63. PubMed ID: 24568116 [TBL] [Abstract][Full Text] [Related]
19. Plasmonic effects of au/ag bimetallic multispiked nanoparticles for photovoltaic applications. Sharma M; Pudasaini PR; Ruiz-Zepeda F; Vinogradova E; Ayon AA ACS Appl Mater Interfaces; 2014 Sep; 6(17):15472-9. PubMed ID: 25137194 [TBL] [Abstract][Full Text] [Related]
20. A hybrid solar cell fabricated using amorphous silicon and a fullerene derivative. Yun MH; Jang JH; Kim KM; Song HE; Lee JC; Kim JY Phys Chem Chem Phys; 2013 Dec; 15(45):19913-8. PubMed ID: 24149894 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]