BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 29442795)

  • 1. Preparation and Characterization of Zn
    Xue X; Zhang J; Chen L; Zhao C; Wang L; Chang L
    J Nanosci Nanotechnol; 2018 Jun; 18(6):4403-4408. PubMed ID: 29442795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis, structural and optical properties of ZnO and Ni-doped ZnO hexagonal nanorods by Co-precipitation method.
    Raja K; Ramesh PS; Geetha D
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 120():19-24. PubMed ID: 24177864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and Study on Magnetic-Optical Properties of Ni-Doped ZnO Nanorod Arrays.
    Wang W; Hui S; Zhang F; Wang X; Zhang S; Yan J; Zhang W
    Micromachines (Basel); 2019 Sep; 10(9):. PubMed ID: 31540514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the Charge-Transfer Between Ga-Doped ZnO Nanoparticles and Molecules Using Surface-Enhanced Raman Scattering: Doping Induced Band-Gap Shrinkage.
    Li P; Wang X; Zhang X; Zhang L; Yang X; Zhao B
    Front Chem; 2019; 7():144. PubMed ID: 30941346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved Surface-Enhanced Raman Scattering Properties of ZrO
    Ji P; Mao Z; Wang Z; Xue X; Zhang Y; Lv J; Shi X
    Nanomaterials (Basel); 2019 Jul; 9(7):. PubMed ID: 31284623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Search for Origin of Room Temperature Ferromagnetism Properties in Ni-Doped ZnO Nanostructure.
    Rana AK; Kumar Y; Rajput P; Jha SN; Bhattacharyya D; Shirage PM
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7691-7700. PubMed ID: 28177610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of Surface-Enhanced Raman Scattering Property of Ni Doping ZnS Nanocrystals.
    Xue X; Mi S; Zhao C; Chang L
    J Nanosci Nanotechnol; 2019 Dec; 19(12):7748-7752. PubMed ID: 31196284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving surface-enhanced Raman scattering properties of TiO(2) nanoparticles by metal Co doping.
    Yang L; Qin X; Gong M; Jiang X; Yang M; Li X; Li G
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 123():224-9. PubMed ID: 24412781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of charge transfer effect in Surface-Enhanced Raman scattering (SERS) by using Antimony-doped tin oxide (ATO) nanoparticles as substrates with tunable optical band gaps and free charge carrier densities.
    Zhang M; Wang Y; Ma Y; Wang X; Zhao B; Ruan W
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 264():120288. PubMed ID: 34455383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesoporous semiconducting TiO
    Yang L; Yin D; Shen Y; Yang M; Li X; Han X; Jiang X; Zhao B
    Phys Chem Chem Phys; 2017 Jul; 19(28):18731-18738. PubMed ID: 28696460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface Plasmon Resonance from Gallium-Doped Zinc Oxide Nanoparticles and Their Electromagnetic Enhancement Contribution to Surface-Enhanced Raman Scattering.
    Wang Y; Zhang M; Ma H; Su H; Li A; Ruan W; Zhao B
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):35038-35045. PubMed ID: 34279091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Mn doping on surface enhanced Raman scattering properties of TiO₂ nanoparticles.
    Xue X; Ji W; Mao Z; Li Z; Ruan W; Zhao B; Lombardi JR
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Sep; 95():213-7. PubMed ID: 22634412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly reproducible surface-enhanced Raman spectra on semiconductor SnO2 octahedral nanoparticles.
    Jiang L; Yin P; You T; Wang H; Lang X; Guo L; Yang S
    Chemphyschem; 2012 Dec; 13(17):3932-6. PubMed ID: 22997142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ZnO nanoparticles on MoS
    Quan Y; Yao J; Yang S; Chen L; Li J; Liu Y; Lang J; Shen H; Wang Y; Wang Y; Yang J; Gao M
    Mikrochim Acta; 2019 Aug; 186(8):593. PubMed ID: 31372825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mg-Doped ZnO Nanoparticles with Tunable Band Gaps for Surface-Enhanced Raman Scattering (SERS)-Based Sensing.
    Adesoye S; Al Abdullah S; Nowlin K; Dellinger K
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diluted magnetic semiconductor properties in TM doped ZnO nanoparticles.
    Jabbar I; Zaman Y; Althubeiti K; Al Otaibi S; Ishaque MZ; Rahman N; Sohail M; Khan A; Ullah A; Del Rosso T; Zaman Q; Khan R; Khan A
    RSC Adv; 2022 Apr; 12(21):13456-13463. PubMed ID: 35527731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly-dispersed TiO
    Yang L; Yin D; Shen Y; Yang M; Li X; Han X; Jiang X; Zhao B
    Phys Chem Chem Phys; 2017 Aug; 19(33):22302-22308. PubMed ID: 28805228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly sensitive SERS behavior and wavelength-dependence charge transfer effect on the PS/Ag/ZIF-8 substrate.
    Xue X; Chen L; Wang C; Zhao C; Wang H; Ma N; Li J; Qiao Y; Chang L; Zhao B
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Feb; 247():119126. PubMed ID: 33160136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro-nano zinc oxide film fabricated by biomimetic mineralization: Designed architectures for SERS substrates.
    Lu F; Guo Y; Wang Y; Song W; Zhao B
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 May; 197():83-87. PubMed ID: 29395930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Au-ZnO hybrid nanoparticles exhibiting strong charge-transfer-induced SERS for recyclable SERS-active substrates.
    Liu L; Yang H; Ren X; Tang J; Li Y; Zhang X; Cheng Z
    Nanoscale; 2015 Mar; 7(12):5147-51. PubMed ID: 25721784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.