These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 29442857)

  • 1. High Aspect Ratio Perforated Co₃O₄ Nanowires Derived from Cobalt-Carbonate-Hydroxide Nanowires with Enhanced Sensing Performance.
    Zhou T; Gao W; Wang Q; Umar A
    J Nanosci Nanotechnol; 2018 May; 18(5):3499-3504. PubMed ID: 29442857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porous Co3O4 nanowires derived from long Co(CO3)(0.5)(OH)·0.11H2O nanowires with improved supercapacitive properties.
    Wang B; Zhu T; Wu HB; Xu R; Chen JS; Lou XW
    Nanoscale; 2012 Mar; 4(6):2145-9. PubMed ID: 22337265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanorod-constructed porous Co3O4 nanowires: highly sensitive sensors for the detection of hydrazine.
    Zhang J; Gao W; Dou M; Wang F; Liu J; Li Z; Ji J
    Analyst; 2015 Mar; 140(5):1686-92. PubMed ID: 25630913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TiO2 decorated Co3O4 acicular nanotube arrays and its application as a non-enzymatic glucose sensor.
    Gao Z; Zhang L; Ma C; Zhou Q; Tang Y; Tu Z; Yang W; Cui L; Li Y
    Biosens Bioelectron; 2016 Jun; 80():511-518. PubMed ID: 26890826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co3O4 nanowires supported on 3D N-doped carbon foam as an electrochemical sensing platform for efficient H2O2 detection.
    Liu M; He S; Chen W
    Nanoscale; 2014 Oct; 6(20):11769-76. PubMed ID: 25157755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microstructure and Electrochemical Performance of Co₃O₄ Nanopillars Calcinated at Various Temperatures.
    Liu C; Li Q; Wang X; Xu J; Li S
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1887-1892. PubMed ID: 29448677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From cobalt nitrate carbonate hydroxide hydrate nanowires to porous Co(3)O(4) nanorods for high performance lithium-ion battery electrodes.
    Zhang H; Wu J; Zhai C; Ma X; Du N; Tu J; Yang D
    Nanotechnology; 2008 Jan; 19(3):035711. PubMed ID: 21817596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Fluoride on the Morphology and Electrochemical Property of Co₃O₄ Nanostructures for Hydrazine Detection.
    Zhou T; Gao W; Wang Q; Umar A
    Materials (Basel); 2018 Jan; 11(2):. PubMed ID: 29382161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The fast nucleation/growth of Co
    Albaqami MD; Medany SS; Nafady A; Ibupoto MH; Willander M; Tahira A; Aftab U; Vigolo B; Ibupoto ZH
    RSC Adv; 2022 Jun; 12(29):18321-18332. PubMed ID: 35799920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchical Co
    Qu F; Zhang S; Zhang B; Zhou X; Du S; Lin CT; Ruan S; Yang M
    Mikrochim Acta; 2019 Mar; 186(4):222. PubMed ID: 30847573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-sensitive hydrazine chemical sensor based on high-aspect-ratio ZnO nanowires.
    Umar A; Rahman MM; Hahn YB
    Talanta; 2009 Feb; 77(4):1376-80. PubMed ID: 19084652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ formation of Co
    Guo Q; Zeng W; Liu S; Li Y
    Nanotechnology; 2020 Apr; 31(26):265501. PubMed ID: 32163940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aerosol-assisted nanostructuring of nickel/cobalt oxide thin films for viable electrochemical hydrazine sensing.
    Rehman A; Ehsan MA; Afzal A; Ali A; Iqbal N
    Analyst; 2021 May; 146(10):3317-3327. PubMed ID: 33999084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of porous Co3O4 nanowires with high CO sensing performance at a low operating temperature.
    Dou Z; Cao C; Chen Y; Song W
    Chem Commun (Camb); 2014 Dec; 50(94):14889-91. PubMed ID: 25325433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CuO nanowire/microflower/nanowire modified Cu electrode with enhanced electrochemical performance for non-enzymatic glucose sensing.
    Li C; Yamahara H; Lee Y; Tabata H; Delaunay JJ
    Nanotechnology; 2015 Jul; 26(30):305503. PubMed ID: 26159235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Freestanding 3D mesoporous Co₃O₄@carbon foam nanostructures for ethanol gas sensing.
    Li L; Liu M; He S; Chen W
    Anal Chem; 2014 Aug; 86(15):7996-8002. PubMed ID: 25011608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel non-enzyme hydrogen peroxide sensor based on catalytic reduction property of silver nanowires.
    Qin X; Wang H; Miao Z; Li J; Chen Q
    Talanta; 2015 Jul; 139():56-61. PubMed ID: 25882408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled synthesis and electrochemical properties of Co3O4 hierarchical nanostructures from an urchinlike cobalt-hydroxide-carbonate precursor.
    Gao B; Fu H; Chen Y; Gu Z
    J Nanosci Nanotechnol; 2012 Oct; 12(10):8067-76. PubMed ID: 23421180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Highly-Sensitive Picric Acid Chemical Sensor Based on ZnO Nanopeanuts.
    Ibrahim AA; Tiwari P; Al-Assiri MS; Al-Salami AE; Umar A; Kumar R; Kim SH; Ansari ZA; Baskoutas S
    Materials (Basel); 2017 Jul; 10(7):. PubMed ID: 28773151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional porous self-assembled chestnut-like nickel-cobalt oxide structure as an electrochemical sensor for sensitive detection of hydrazine in water samples.
    Zhang X; Wang Y; Ning X; Li L; Chen J; Shan D; Gao R; Lu X
    Anal Chim Acta; 2018 Aug; 1022():28-36. PubMed ID: 29729735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.