These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 29442892)
21. "Use of acidophilic bacteria of the genus Acidithiobacillus to biosynthesize CdS fluorescent nanoparticles (quantum dots) with high tolerance to acidic pH". Ulloa G; Collao B; Araneda M; Escobar B; Álvarez S; Bravo D; Pérez-Donoso JM Enzyme Microb Technol; 2016 Dec; 95():217-224. PubMed ID: 27866618 [TBL] [Abstract][Full Text] [Related]
22. L-Cysteine capped CdTe-CdS core-shell quantum dots: preparation, characterization and immuno-labeling of HeLa cells. Zhang H; Sun P; Liu C; Gao H; Xu L; Fang J; Wang M; Liu J; Xu S Luminescence; 2011; 26(2):86-92. PubMed ID: 20017130 [TBL] [Abstract][Full Text] [Related]
23. Facile Synthesis of Glutathione-capped CdS Quantum Dots as a Fluorescence Sensor for Rapid Detection and Quantification of Paraquat. Li H; Liu J; Yang X Anal Sci; 2015; 31(10):1011-7. PubMed ID: 26460365 [TBL] [Abstract][Full Text] [Related]
24. Synthesis of NAC capped near infrared-emitting CdTeS alloyed quantum dots and application for in vivo early tumor imaging. Xue B; Deng DW; Cao J; Liu F; Li X; Akers W; Achilefu S; Gu YQ Dalton Trans; 2012 Apr; 41(16):4935-47. PubMed ID: 22451225 [TBL] [Abstract][Full Text] [Related]
25. A facile cation exchange-based aqueous synthesis of highly stable and biocompatible Ag₂S quantum dots emitting in the second near-infrared biological window. Gui R; Sun J; Liu D; Wang Y; Jin H Dalton Trans; 2014 Nov; 43(44):16690-7. PubMed ID: 25270003 [TBL] [Abstract][Full Text] [Related]
26. Synthesis, characterization and biocompatibility of cadmium sulfide nanoparticles capped with dextrin for in vivo and in vitro imaging application. Reyes-Esparza J; Martínez-Mena A; Gutiérrez-Sancha I; Rodríguez-Fragoso P; de la Cruz GG; Mondragón R; Rodríguez-Fragoso L J Nanobiotechnology; 2015 Nov; 13():83. PubMed ID: 26577398 [TBL] [Abstract][Full Text] [Related]
27. Spectroscopic studies on the interaction between EcoRI and CdS QDs and conformation of EcoRI in EcoRI-CdS QDs bioconjugates. Song Y; Luo D; Ye S; Huang M; Zhong D; Huang Z; Hou H; Wang L Phys Chem Chem Phys; 2012 Dec; 14(47):16258-66. PubMed ID: 23114618 [TBL] [Abstract][Full Text] [Related]
28. Aqueous one-pot synthesis of bright and ultrasmall CdTe/CdS near-infrared-emitting quantum dots and their application for tumor targeting in vivo. Chen LN; Wang J; Li WT; Han HY Chem Commun (Camb); 2012 May; 48(41):4971-3. PubMed ID: 22497009 [TBL] [Abstract][Full Text] [Related]
29. Facile green extracellular biosynthesis of CdS quantum dots by white rot fungus Phanerochaete chrysosporium. Chen G; Yi B; Zeng G; Niu Q; Yan M; Chen A; Du J; Huang J; Zhang Q Colloids Surf B Biointerfaces; 2014 May; 117():199-205. PubMed ID: 24632392 [TBL] [Abstract][Full Text] [Related]
30. Synthesis of glutathione-capped CdS quantum dots and preliminary studies on protein detection and cell fluorescence image. Jiang C; Xu S; Yang D; Zhang F; Wang W Luminescence; 2007; 22(5):430-7. PubMed ID: 17492630 [TBL] [Abstract][Full Text] [Related]
31. CdSe and CdSe/CdS core-shell QDs: New approach for synthesis, investigating optical properties and application in pollutant degradation. Abbasi S; Molaei M; Karimipour M Luminescence; 2017 Nov; 32(7):1137-1144. PubMed ID: 28378916 [TBL] [Abstract][Full Text] [Related]
32. Highly luminescent and biocompatible near-infrared core-shell CdSeTe/CdS/C quantum dots for probe labeling tumor cells. He L; Li L; Wang W; Abdel-Halim ES; Zhang J; Zhu JJ Talanta; 2016; 146():209-15. PubMed ID: 26695254 [TBL] [Abstract][Full Text] [Related]
33. Fluorescence detection of adenosine-5'-triphosphate and alkaline phosphatase based on the generation of CdS quantum dots. Liu S; Wang X; Pang S; Na W; Yan X; Su X Anal Chim Acta; 2014 May; 827():103-10. PubMed ID: 24833001 [TBL] [Abstract][Full Text] [Related]
34. A one-step selective fluorescence turn-on detection of cysteine and homocysteine based on a facile CdTe/CdS quantum dots-phenanthroline system. Chen S; Tian J; Jiang Y; Zhao Y; Zhang J; Zhao S Anal Chim Acta; 2013 Jul; 787():181-8. PubMed ID: 23830437 [TBL] [Abstract][Full Text] [Related]
35. Microwave-assisted cation exchange toward synthesis of near-infrared emitting PbS/CdS core/shell quantum dots with significantly improved quantum yields through a uniform growth path. Ren F; Zhao H; Vetrone F; Ma D Nanoscale; 2013 Sep; 5(17):7800-4. PubMed ID: 23887182 [TBL] [Abstract][Full Text] [Related]
36. Design and synthesis of highly luminescent near-infrared-emitting water-soluble CdTe/CdSe/ZnS core/shell/shell quantum dots. Zhang W; Chen G; Wang J; Ye BC; Zhong X Inorg Chem; 2009 Oct; 48(20):9723-31. PubMed ID: 19772326 [TBL] [Abstract][Full Text] [Related]
37. Surface-modified CdS quantum dots as luminescent probes for sulfadiazine determination. Liu M; Xu L; Cheng W; Zeng Y; Yan Z Spectrochim Acta A Mol Biomol Spectrosc; 2008 Oct; 70(5):1198-202. PubMed ID: 18201928 [TBL] [Abstract][Full Text] [Related]
38. Synthesis of highly luminescent and biocompatible CdTe/CdS/ZnS quantum dots using microwave irradiation: a comparative study of different ligands. He H; Sun X; Wang X; Xu H Luminescence; 2014 Nov; 29(7):837-45. PubMed ID: 24436082 [TBL] [Abstract][Full Text] [Related]
39. Photocatalytic hydrogen evolution from glycerol and water over nickel-hybrid cadmium sulfide quantum dots under visible-light irradiation. Wang JJ; Li ZJ; Li XB; Fan XB; Meng QY; Yu S; Li CB; Li JX; Tung CH; Wu LZ ChemSusChem; 2014 May; 7(5):1468-75. PubMed ID: 24692310 [TBL] [Abstract][Full Text] [Related]
40. Single-step noninjection synthesis of highly luminescent water soluble Cu+ doped CdS quantum dots: application as bio-imaging agents. Xuan T; Wang S; Wang X; Liu J; Chen J; Li H; Pan L; Sun Z Chem Commun (Camb); 2013 Oct; 49(79):9045-7. PubMed ID: 23986122 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]