BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 29443009)

  • 21. Assessment of occupational radiation exposure in underground artisanal gold mines in Tongo, Upper East Region of Ghana.
    Doyi I; Oppon OC; Glover ET; Gbeddy G; Kokroko W
    J Environ Radioact; 2013 Dec; 126():77-82. PubMed ID: 23968753
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Concentrations of radon and decay products in various underground mines in western Turkey and total effective dose equivalents.
    Yener G; Küçüktaş E
    Analyst; 1998 Jan; 123(1):31-4. PubMed ID: 9581017
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of radon reduction and ventilation systems in uranium mines in China.
    Hu PH; Li XJ
    J Radiol Prot; 2012 Sep; 32(3):289-300. PubMed ID: 22809776
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Occupational exposure of phosphate mine workers: airborne radioactivity measurements and dose assessment.
    Khater AE; Hussein MA; Hussein MI
    J Environ Radioact; 2004; 75(1):47-57. PubMed ID: 15149761
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Radon dynamics and reduction in an underground mine in Brazil. Implications for workers' exposure.
    Evangelista H; Pereira EB; Fernandes HM; Sampaio M
    Radiat Prot Dosimetry; 2002; 98(2):235-8. PubMed ID: 11926375
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diseases of uranium miners and other underground miners exposed to radon.
    Samet JM
    Occup Med; 1991; 6(4):629-39. PubMed ID: 1962250
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Review of Radon Equilibrium Factors in Underground Mines, Caves, and Thermal Spas.
    Chen J; Harley NH
    Health Phys; 2020 Sep; 119(3):342-350. PubMed ID: 31934931
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Occupational exposure to radon for underground tourist routes in Poland: Doses to lung and the risk of developing lung cancer.
    Walczak K; Olszewski J; Politański P; Zmyślony M
    Int J Occup Med Environ Health; 2017 Jul; 30(5):687-694. PubMed ID: 28584312
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Theoretical considerations regarding the migration of 222Rn and 220Rn from uranium- and thorium-bearing underground environments.
    Bigu J
    Health Phys; 1994 Jul; 67(1):60-9. PubMed ID: 8200803
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comprehensive investigation of radon exposure in Austrian tourist mines and caves.
    Gruber V; Ringer W; Gräser J; Aspek W; Gschnaller J
    Radiat Prot Dosimetry; 2014 Nov; 162(1-2):78-82. PubMed ID: 25013031
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Radiological study of exposure levels in El Maghara underground coal mine.
    Amer HA; Shawky S; Hussein MI; Abd el-Hady ML
    J Environ Monit; 2002 Aug; 4(4):583-7. PubMed ID: 12196005
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Radiological classification of Polish underground mines and recommendations of surveillance.
    Domański T; Chruścielewski W; Kluszczyński D; Olszewski J
    Pol J Occup Med Environ Health; 1991; 4(3):291-303. PubMed ID: 1819347
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of Dose Conversions, Equilibrium Factors, and Unattached Fractions on Radon Risk Assessment in Operating and Show Underground Mines.
    Skubacz K; Wołoszczuk K; Grygier A; Samolej K
    Int J Environ Res Public Health; 2023 Apr; 20(8):. PubMed ID: 37107764
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extremely high radon activity concentration in two adits of the abandoned uranium mine 'Podgórze' in Kowary (Sudety Mts., Poland).
    Fijałkowska-Lichwa L
    J Environ Radioact; 2016 Dec; 165():13-23. PubMed ID: 27573759
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Outdoor thoron and progeny in a thorium rich area with old decommissioned mines and waste rock.
    Haanes H; Finne IE; Kolstad T; Mauring A; Dahlgren S; Rudjord AL
    J Environ Radioact; 2016 Oct; 162-163():23-32. PubMed ID: 27214284
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exposure to 222Rn in ten underground mines in Iran.
    Ghiassi-Nejad M; Beitollahi MM; Fathabadi N; Nasiree P
    Radiat Prot Dosimetry; 2002; 98(2):223-5. PubMed ID: 11926373
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vivo measurements of 210Pb in skull and knee geometries as an indicator of cumulative 222Rn exposure in a underground coal mine in Brazil.
    Dantas AL; Dantas BM; Lipsztein JL; Spitz HB
    Radiat Prot Dosimetry; 2007; 125(1-4):568-71. PubMed ID: 17309873
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An improved mathematical model for prediction of air quantity to minimise radiation levels in underground uranium mines.
    Panigrahi DC; Sahu P; Mishra DP
    J Environ Radioact; 2015 Feb; 140():95-104. PubMed ID: 25461521
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Radon concentration measurements in bituminous coal mines.
    Fisne A; Okten G; Celebi N
    Radiat Prot Dosimetry; 2005; 113(2):173-7. PubMed ID: 15657110
    [TBL] [Abstract][Full Text] [Related]  

  • 40. OCCUPATIONAL EXPOSURE TO RADON IN DIFFERENT KINDS OF NON-URANIUM MINES.
    Fan D; Zhuo W; Zhang Y
    Radiat Prot Dosimetry; 2016 Sep; 170(1-4):311-4. PubMed ID: 26940440
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.