These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 29443013)

  • 1. Stability enhancement of Cu
    Barman SK; Huda MN
    J Phys Condens Matter; 2018 Apr; 30(16):165701. PubMed ID: 29443013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of substitutional doping on Cu vacancy formation in Cu
    Beronio ERA; Colambo IR; Padama AAB
    Phys Chem Chem Phys; 2021 Apr; 23(14):8800-8808. PubMed ID: 33876039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal doping by vacancy formation in copper sulfide nanocrystal arrays.
    Bekenstein Y; Vinokurov K; Keren-Zur S; Hadar I; Schilt Y; Raviv U; Millo O; Banin U
    Nano Lett; 2014 Mar; 14(3):1349-53. PubMed ID: 24564833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilizing Cu2S for photovoltaics one atomic layer at a time.
    Riha SC; Jin S; Baryshev SV; Thimsen E; Wiederrecht GP; Martinson AB
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):10302-9. PubMed ID: 24147782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic-level alloying and de-alloying in doped gold nanoparticles.
    Gottlieb E; Qian H; Jin R
    Chemistry; 2013 Mar; 19(13):4238-43. PubMed ID: 23404729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper(i) sulfide: a two-dimensional semiconductor with superior oxidation resistance and high carrier mobility.
    Guo Y; Wu Q; Li Y; Lu N; Mao K; Bai Y; Zhao J; Wang J; Zeng XC
    Nanoscale Horiz; 2019 Jan; 4(1):223-230. PubMed ID: 32254160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure Relaxation and Liquidlike Enhanced Cu Diffusion at the Surface of β-Cu
    Wang J; Gao J; Chou MY; Landman U
    Nano Lett; 2021 Oct; 21(20):8895-8900. PubMed ID: 34617776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and SERS properties of Ag/Cu2S composite micro-nanostructures over Cu foil.
    Song W; Wang J; Mao Z; Xu W; Zhao B
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Sep; 79(5):1247-50. PubMed ID: 21571583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A quantum-mechanical investigation of oxygen vacancies and copper doping in the orthorhombic CaSnO
    Maul J; Dos Santos IMG; Sambrano JR; Casassa S; Erba A
    Phys Chem Chem Phys; 2018 Aug; 20(32):20970-20980. PubMed ID: 30070290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling electron beam-induced structure modifications and cation exchange in cadmium sulfide-copper sulfide heterostructured nanorods.
    Zheng H; Sadtler B; Habenicht C; Freitag B; Alivisatos AP; Kisielowski C
    Ultramicroscopy; 2013 Nov; 134():207-13. PubMed ID: 23830376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering the interfaces of ITO@Cu2S nanowire arrays toward efficient and stable counter electrodes for quantum-dot-sensitized solar cells.
    Jiang Y; Zhang X; Ge QQ; Yu BB; Zou YG; Jiang WJ; Hu JS; Song WG; Wan LJ
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15448-55. PubMed ID: 25137502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-classical behaviour of higher valence dopants in chromium (III) oxide by a Cr vacancy compensation mechanism.
    Carey JJ; Nolan M
    J Phys Condens Matter; 2017 Oct; 29(41):415501. PubMed ID: 28745616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation energies and electronic structure of intrinsic vacancy defects and oxygen vacancy clustering in BaZrO3.
    Muhammad Alay-E-Abbas S; Nazir S; Shaukat A
    Phys Chem Chem Phys; 2016 Aug; 18(34):23737-45. PubMed ID: 27514742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformal Cu2S-coated Cu2O nanostructures grown by ion exchange reaction and their photoelectrochemical properties.
    Minguez-Bacho I; Courté M; Fan HJ; Fichou D
    Nanotechnology; 2015 May; 26(18):185401. PubMed ID: 25865464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High chalcocite Cu2S: a solid-liquid hybrid phase.
    Wang LW
    Phys Rev Lett; 2012 Feb; 108(8):085703. PubMed ID: 22463544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorbate induced vacancy formation on silver surfaces.
    Jones TE; Rocha TC; Knop-Gericke A; Stampfl C; Schlögl R; Piccinin S
    Phys Chem Chem Phys; 2014 May; 16(19):9002-14. PubMed ID: 24695725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mid-Gap States and Normal vs Inverted Bonding in Luminescent Cu
    Nelson HD; Hinterding SOM; Fainblat R; Creutz SE; Li X; Gamelin DR
    J Am Chem Soc; 2017 May; 139(18):6411-6421. PubMed ID: 28421742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distortion energy-electronic energy compensation determines the nature of solute interactions with irradiation induced vacancies in ferritic steel.
    Ahlawat S; Srinivasu K; Biswas A; Choudhury N
    Phys Chem Chem Phys; 2021 Apr; 23(14):8689-8704. PubMed ID: 33876029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First-principles study of electronic properties of Cu doped Ag
    Du C; Zhao Y; Liu X; Shan G
    J Phys Condens Matter; 2018 Oct; 30(42):425502. PubMed ID: 30207292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced photophysical properties of plasmonic magnetic metal-alloyed semiconductor heterostructure nanocrystals: a case study for the Ag@Ni/Zn1-xMgxO system.
    Paul S; Ghosh S; Saha M; De SK
    Phys Chem Chem Phys; 2016 May; 18(18):13092-107. PubMed ID: 27113320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.