These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 29443520)

  • 21. A statistical theory of cosolvent-induced coil-globule transitions in dilute polymer solution.
    Budkov YA; Kolesnikov AL; Georgi N; Kiselev MG
    J Chem Phys; 2014 Jul; 141(1):014902. PubMed ID: 25005306
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct characterization of hydrophobic hydration during cold and pressure denaturation.
    Das P; Matysiak S
    J Phys Chem B; 2012 May; 116(18):5342-8. PubMed ID: 22512347
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of aqueous solutions of trimethylamine-N-oxide on pressure induced modifications of hydrophobic interactions.
    Sarma R; Paul S
    J Chem Phys; 2012 Sep; 137(9):094502. PubMed ID: 22957576
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of cosolvents on nano-confined water: a molecular dynamics study.
    Das P
    Nanoscale; 2012 Apr; 4(9):2931-6. PubMed ID: 22441726
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of trimethylamine-N-oxide on pressure-induced dissolution of hydrophobic solute.
    Sarma R; Paul S
    J Chem Phys; 2012 Sep; 137(11):114503. PubMed ID: 22998267
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Attractions, water structure, and thermodynamics of hydrophobic polymer collapse.
    Goel G; Athawale MV; Garde S; Truskett TM
    J Phys Chem B; 2008 Oct; 112(42):13193-6. PubMed ID: 18821793
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microscopic significance of hydrophobic residues in the protein-stabilizing effect of trimethylamine N-oxide (TMAO).
    Yang Y; Mu Y; Li W
    Phys Chem Chem Phys; 2016 Aug; 18(32):22081-8. PubMed ID: 27147501
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of cosolvent effect on solvation free energies and solubilities of organic compounds in supercritical carbon dioxide based on fully atomistic molecular simulations.
    Frolov AI; Kiselev MG
    J Phys Chem B; 2014 Oct; 118(40):11769-80. PubMed ID: 25181254
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Kirkwood-Buff theory and the effect of cosolvents on biochemical reactions.
    Shimizu S; Boon CL
    J Chem Phys; 2004 Nov; 121(18):9147-55. PubMed ID: 15527383
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of viscosity in various dynamical processes of different fluorophores in ionic liquid-cosolvent mixtures: a femtosecond fluorescence upconversion study.
    Dutta R; Jana G; Mondal D; Pyne A; Sil S; Chattaraj PK; Sarkar N
    Photochem Photobiol Sci; 2019 Jun; 18(6):1359-1372. PubMed ID: 30916109
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solvent sensitivity of protein unfolding: dynamical study of chicken villin headpiece subdomain in water-ethanol binary mixture.
    Ghosh R; Roy S; Bagchi B
    J Phys Chem B; 2013 Dec; 117(49):15625-38. PubMed ID: 24168520
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of the osmolyte TMAO (Trimethylamine-N-oxide) on aqueous hydrophobic contact-pair interactions.
    Macdonald RD; Khajehpour M
    Biophys Chem; 2013 Dec; 184():101-7. PubMed ID: 24216065
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of monohydric alcohols and polyols on the thermal stability of a protein.
    Murakami S; Kinoshita M
    J Chem Phys; 2016 Mar; 144(12):125105. PubMed ID: 27036482
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interactions of S-peptide analogue in aqueous urea and trimethylamine-N-oxide solutions: a molecular dynamics simulation study.
    Sarma R; Paul S
    J Chem Phys; 2013 Jul; 139(3):034504. PubMed ID: 23883044
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quasi-chemical theory of cosolvent hydrophobic preferential interactions.
    Priya MH; Merchant S; Asthagiri D; Paulaitis ME
    J Phys Chem B; 2012 Jun; 116(22):6506-13. PubMed ID: 22574766
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The influence of urea and trimethylamine-N-oxide on hydrophobic interactions.
    Paul S; Patey GN
    J Phys Chem B; 2007 Jul; 111(28):7932-3. PubMed ID: 17580863
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unfolding of hydrophobic polymers in guanidinium chloride solutions.
    Godawat R; Jamadagni SN; Garde S
    J Phys Chem B; 2010 Feb; 114(6):2246-54. PubMed ID: 20146543
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trimethylamine-N-oxide: its hydration structure, surface activity, and biological function, viewed by vibrational spectroscopy and molecular dynamics simulations.
    Ohto T; Hunger J; Backus EH; Mizukami W; Bonn M; Nagata Y
    Phys Chem Chem Phys; 2017 Mar; 19(10):6909-6920. PubMed ID: 28149990
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct osmolyte-macromolecule interactions confer entropic stability to folded states.
    Rodríguez-Ropero F; van der Vegt NF
    J Phys Chem B; 2014 Jul; 118(26):7327-34. PubMed ID: 24927256
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Trimethylamine N-oxide (TMAO) and tert-butyl alcohol (TBA) at hydrophobic interfaces: insights from molecular dynamics simulations.
    Fiore A; Venkateshwaran V; Garde S
    Langmuir; 2013 Jun; 29(25):8017-24. PubMed ID: 23687932
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.