These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 2944357)

  • 1. Quantitation of fluxes in the gluconeogenic, glycolytic, and pentose phosphate pathways in isolated rat hepatocytes: energetic considerations.
    Blum JJ; Rabkin MS
    Adv Exp Med Biol; 1986; 194():255-70. PubMed ID: 2944357
    [No Abstract]   [Full Text] [Related]  

  • 2. Quantitative analysis of flux along the gluconeogenic, glycolytic and pentose phosphate pathways under reducing conditions in hepatocytes isolated from fed rats.
    Crawford JM; Blum JJ
    Biochem J; 1983 Jun; 212(3):585-98. PubMed ID: 6411069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-ordinate control of phosphofructokinase and pyruvate kinase by fructose diphosphate: a mechanism for amplification and step changes in the regulation of glycolysis in liver.
    Tornheim K
    J Theor Biol; 1980 Jul; 85(2):199-222. PubMed ID: 6448938
    [No Abstract]   [Full Text] [Related]  

  • 4. Interaction between the pentose phosphate pathway and gluconeogenesis from glycerol in the liver.
    Jin ES; Sherry AD; Malloy CR
    J Biol Chem; 2014 Nov; 289(47):32593-603. PubMed ID: 25288790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short-term modulation of glycogen metabolism, glycolysis and gluconeogenesis by physiological oxygen concentrations in hepatocyte cultures.
    Wölfle D; Schmidt H; Jungermann K
    Eur J Biochem; 1983 Oct; 135(3):405-12. PubMed ID: 6413204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on the regulation of glycolysis in isolated fetal rat hepatocytes.
    Hommes FA; Luit-De Haan G
    Biol Neonate; 1977; 31(1-2):65-70. PubMed ID: 139177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Hepatic glycolytic intermediates and glucoregulatory enzymes in septic shock due to peritonitis: experimental study in rats].
    Ebata T; Hirata K; Denno R; Gotoh Y; Azuma K; Ishida K; Hasegawa I; Hayasaka H
    Nihon Geka Gakkai Zasshi; 1984 Jan; 85(1):1-5. PubMed ID: 6234452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolite-controlled phosphorylation of phosphofructokinase in rat hepatocytes.
    Brand IA; Söling HD
    Eur J Biochem; 1982 Feb; 122(1):175-81. PubMed ID: 6460620
    [No Abstract]   [Full Text] [Related]  

  • 9. Glycolytic and gluconeogenic states in an enzyme system reconstituted from phosphofructokinase and fructose 1,6-bisphosphatase.
    Schellenberger W; Eschrich K; Hofmann E
    Biomed Biochim Acta; 1985; 44(4):503-16. PubMed ID: 2992456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental changes of glycolytic and gluconeogenic enzymes in fetal and neonatal rat liver.
    Schaub J; Gutmann I; Lippert H
    Horm Metab Res; 1972 Mar; 4(2):110-9. PubMed ID: 4337573
    [No Abstract]   [Full Text] [Related]  

  • 11. Pleiotropic regulation of central carbohydrate metabolism in Escherichia coli via the gene csrA.
    Sabnis NA; Yang H; Romeo T
    J Biol Chem; 1995 Dec; 270(49):29096-104. PubMed ID: 7493933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multienzyme aggregate with glycolytic activity from Escherichia coli [proceedings].
    Gorringe DM; Moses V
    Biochem Soc Trans; 1978; 6(1):167-9. PubMed ID: 147788
    [No Abstract]   [Full Text] [Related]  

  • 13. Compartmentation between glycolysis and gluconeogenesis in rat liver.
    Threlfall CJ; Heath DF
    Biochem J; 1968 Nov; 110(2):303-12. PubMed ID: 5726210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gluconeogenesis in isolated hepatic parenchymal cells. VII. Effects of monobutyryl cyclic adenosine monophosphate on gluconeogenic intermediates, phosphofructokinase, and fructose diphosphatase.
    Veneziale CM; Swenson RP
    Mayo Clin Proc; 1975 May; 50(5):271-8. PubMed ID: 165334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early effects of vitamin A toxicity on hepatic glycolysis in rat.
    Singh VN; Singh M; Dileepan KN
    J Nutr; 1978 Dec; 108(12):1959-62. PubMed ID: 152804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbohydrate metabolism in rat kidney: heterogeneous distribution of glycolytic and gluconeogenic key enzymes.
    Schmid H; Scholz M; Mall A; Schmidt U; Guder WG; Dubach UC
    Curr Probl Clin Biochem; 1977 Oct 23-26; 8():282-9. PubMed ID: 210996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vernonia amygdalina simultaneously suppresses gluconeogenesis and potentiates glucose oxidation via the pentose phosphate pathway in streptozotocin-induced diabetic rats.
    Atangwho IJ; Yin KB; Umar MI; Ahmad M; Asmawi MZ
    BMC Complement Altern Med; 2014 Oct; 14():426. PubMed ID: 25358757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional significance of hepatocyte heterogeneity for glycolysis and gluconeogenesis.
    Jungermann K
    Pharmacol Biochem Behav; 1983; 18 Suppl 1():409-14. PubMed ID: 6634851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelization and experimental studies on the control of the glycolytic-glycogenolytic pathway in rat liver.
    Torres NV
    Mol Cell Biochem; 1994 Mar; 132(2):117-26. PubMed ID: 7969094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new method of assessing rates of the futile cycle during glycolytic and gluconeogenic metabolism.
    Torres JC; Guixé V; Babul J
    Arch Biochem Biophys; 1995 Aug; 321(2):517-25. PubMed ID: 7646079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.