These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 2944359)

  • 1. Myocardial acidosis and the mitigation of tissue ATP depletion in ischemic cardiac muscle: the role of the mitochondrial ATPase.
    Rouslin W
    Adv Exp Med Biol; 1986; 194():355-73. PubMed ID: 2944359
    [No Abstract]   [Full Text] [Related]  

  • 2. Effects of oligomycin and acidosis on rates of ATP depletion in ischemic heart muscle.
    Rouslin W; Erickson JL; Solaro RJ
    Am J Physiol; 1986 Mar; 250(3 Pt 2):H503-8. PubMed ID: 2937313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors affecting the loss of mitochondrial function during zero-flow ischemia (autolysis) in slow and fast heart-rate hearts.
    Rouslin W
    J Mol Cell Cardiol; 1988 Nov; 20(11):999-1007. PubMed ID: 2976846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP depletion and mitochondrial functional loss during ischemia in slow and fast heart-rate hearts.
    Rouslin W; Broge CW; Grupp IL
    Am J Physiol; 1990 Dec; 259(6 Pt 2):H1759-66. PubMed ID: 2148059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protonic inhibition of the mitochondrial oligomycin-sensitive adenosine 5'-triphosphatase in ischemic and autolyzing cardiac muscle. Possible mechanism for the mitigation of ATP hydrolysis under nonenergizing conditions.
    Rouslin W
    J Biol Chem; 1983 Aug; 258(16):9657-61. PubMed ID: 6224783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Why are ATP depletion rates in situ in ischemic myocardium so much lower than one might predict from the activity of the mitochondrial ATPase in sonicated heart mitochondria?
    Rouslin W; Long RB; Broge CW
    J Mol Cell Cardiol; 1997 Jun; 29(6):1505-10. PubMed ID: 9220337
    [No Abstract]   [Full Text] [Related]  

  • 7. Effect of inhibition of the mitochondrial ATPase on net myocardial ATP in total ischemia.
    Jennings RB; Reimer KA; Steenbergen C
    J Mol Cell Cardiol; 1991 Dec; 23(12):1383-95. PubMed ID: 1839801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of reversible ischemia on the activity of the mitochondrial ATPase: relationship to ischemic preconditioning.
    Vander Heide RS; Hill ML; Reimer KA; Jennings RB
    J Mol Cell Cardiol; 1996 Jan; 28(1):103-12. PubMed ID: 8745218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors affecting the reactivation of the mitochondrial adenosine 5'-triphosphatase and the release of ATPase inhibitor protein during and following the reenergization of mitochondria from ischemic cardiac muscle.
    Rouslin W; Broge CW
    Arch Biochem Biophys; 1989 Dec; 275(2):385-94. PubMed ID: 2531991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of the mitochondrial ATPase in situ in cardiac muscle: role of the inhibitor subunit.
    Rouslin W
    J Bioenerg Biomembr; 1991 Dec; 23(6):873-88. PubMed ID: 1838111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical derangements in ischemic myocardium: the role of carnitine.
    Siliprandi N; Di Lisa F; Toninello A
    G Ital Cardiol; 1984 Oct; 14(10):804-8. PubMed ID: 6240423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-energy phosphate and mitochondrial Mg-2 plus-stimulated ATPase activities in ischemic and nonischemic areas of the myocardium with acute experimental coronary occlusion.
    Ziegelhöffer A; Kostolanský S; Fedelesová M
    J Mol Cell Cardiol; 1974 Dec; 6(6):567-74. PubMed ID: 4280449
    [No Abstract]   [Full Text] [Related]  

  • 13. Control of energy production in cardiac muscle: effects of ischemia in acidosis.
    Williamson JR; Steenbergen C; Deleeuw G; Barlow C
    Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():521-31. PubMed ID: 22905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A protective effect of a mild acidosis on hypoxic heart muscle.
    Nayler WG; Ferrari R; Poole-Wilson PA; Yepez CE
    J Mol Cell Cardiol; 1979 Oct; 11(10):1053-71. PubMed ID: 42803
    [No Abstract]   [Full Text] [Related]  

  • 15. Cardiac adaptation to ischemia. Ischemic preconditioning increases myocardial tolerance to subsequent ischemic episodes.
    Reimer KA; Murry CE; Jennings RB
    Circulation; 1990 Dec; 82(6):2266-8. PubMed ID: 2146994
    [No Abstract]   [Full Text] [Related]  

  • 16. Divalent cation-activated ATP hydrolysis by mitochondrial ATP'ase--mechanism for energy depletion in ischemic reperfused myocardium.
    Peng CF; Murphy ML; Straub KD
    Cell Calcium; 1982 Aug; 3(3):227-41. PubMed ID: 6215983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protonic inhibition of the mitochondrial adenosine 5'-triphosphatase in ischemic cardiac muscle. Reversible binding of the ATPase inhibitor protein to the mitochondrial ATPase during ischemia.
    Rouslin W; Pullman ME
    J Mol Cell Cardiol; 1987 Jul; 19(7):661-8. PubMed ID: 2960823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of ATP conservation during ischemia in slow and fast heart rate hearts.
    Rouslin W; Broge CW
    Am J Physiol; 1993 Jan; 264(1 Pt 1):C209-16. PubMed ID: 8430769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of acidosis and ATP depletion on cardiac muscle electron transfer complex I.
    Rouslin W
    J Mol Cell Cardiol; 1991 Oct; 23(10):1127-35. PubMed ID: 1749004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of insulin on myocardial metabolism and acidosis in normoxia and ischaemia. A 31P-NMR study.
    Bailey IA; Radda GK; Seymour AM; Williams SR
    Biochim Biophys Acta; 1982 Feb; 720(1):17-27. PubMed ID: 7037057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.