BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29443795)

  • 1. POSTERIOR PRECORTICAL VITREOUS POCKETS IN HIGH MYOPIA OBSERVED BY ENHANCED VITREOUS IMAGING OF SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY.
    Wang X; Shen M; Wang R; Zhou Y; Li T; Xiao M; Song M; Sun X; Wang F
    Retina; 2019 Jun; 39(6):1100-1109. PubMed ID: 29443795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of Posterior Precortical Vitreous Pockets and Cloquet’s Canal in Patients with Myopia by Optical Coherence Tomography.
    She X; Ye X; Chen R; Pan D; Shen L
    Invest Ophthalmol Vis Sci; 2019 Nov; 60(14):4882-4888. PubMed ID: 31752017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vitreous changes in high myopia observed by swept-source optical coherence tomography.
    Itakura H; Kishi S; Li D; Nitta K; Akiyama H
    Invest Ophthalmol Vis Sci; 2014 Mar; 55(3):1447-52. PubMed ID: 24508787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. En face imaging of posterior precortical vitreous pockets using swept-source optical coherence tomography.
    Itakura H; Kishi S; Li D; Akiyama H
    Invest Ophthalmol Vis Sci; 2015 May; 56(5):2898-900. PubMed ID: 26029885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation of posterior precortical vitreous pocket using swept-source optical coherence tomography.
    Itakura H; Kishi S; Li D; Akiyama H
    Invest Ophthalmol Vis Sci; 2013 May; 54(5):3102-7. PubMed ID: 23599325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Posterior precortical vitreous pockets and connecting channels in children on swept-source optical coherence tomography.
    Li D; Kishi S; Itakura H; Ikeda F; Akiyama H
    Invest Ophthalmol Vis Sci; 2014 Apr; 55(4):2412-6. PubMed ID: 24609625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alterations of posterior precortical vitreous pockets with positional changes.
    Itakura H; Kishi S
    Retina; 2013; 33(7):1417-20. PubMed ID: 23514794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. OBSERVATION OF VITREOUS FEATURES USING ENHANCED VITREOUS IMAGING OPTICAL COHERENCE TOMOGRAPHY IN HIGHLY MYOPIC RETINOSCHISIS.
    Song M; Shen M; Zhou Y; Zheng K; Zhai Y; Xiao M; Wang X; Wang F; Sun X
    Retina; 2019 Sep; 39(9):1732-1741. PubMed ID: 29912094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining posterior vitreous structure by analysis of images obtained by AI-based 3D segmentation and ultrawidefield optical coherence tomography.
    Ohno-Matsui K; Takahashi H; Mao Z; Nakao N
    Br J Ophthalmol; 2023 May; 107(5):732-737. PubMed ID: 34933898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Higher Numbers of Hyperreflective Foci Seen in the Vitreous on Spectral-Domain Optical Coherence Tomographic Images in Eyes with More Severe Diabetic Retinopathy.
    Mizukami T; Hotta Y; Katai N
    Ophthalmologica; 2017; 238(1-2):74-80. PubMed ID: 28486219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Posterior Vitreous Detachment in Highly Myopic Patients.
    Hayashi K; Manabe SI; Hirata A; Yoshimura K
    Invest Ophthalmol Vis Sci; 2020 Apr; 61(4):33. PubMed ID: 32334432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The premacular bursa's shape revealed in vivo by swept-source optical coherence tomography.
    Schaal KB; Pang CE; Pozzoni MC; Engelbert M
    Ophthalmology; 2014 May; 121(5):1020-8. PubMed ID: 24507856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced High-Density Line Spectral-Domain Optical Coherence Tomography Imaging of the Vitreoretinal Interface: Description of Selected Cases.
    Kim YC; Harasawa M; Salcedo-Villanueva G; Siringo FS; Paciuc-Beja M; Olson JL; Mandava N; Quiroz-Mercado H
    Semin Ophthalmol; 2016; 31(6):559-66. PubMed ID: 25751634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. OCT En Face Analysis of the Posterior Vitreous Reveals Topographic Relationships among Premacular Bursa, Prevascular Fissures, and Cisterns.
    Leong BCS; Fragiotta S; Kaden TR; Freund KB; Zweifel S; Engelbert M
    Ophthalmol Retina; 2020 Jan; 4(1):84-89. PubMed ID: 31735635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced vitreous imaging optical coherence tomography in primary macular holes.
    Takahashi A; Nagaoka T; Yoshida A
    Int Ophthalmol; 2016 Jun; 36(3):355-63. PubMed ID: 26349565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo imaging of the fibrillar architecture of the posterior vitreous and its relationship to the premacular bursa, Cloquet's canal, prevascular vitreous fissures, and cisterns.
    Gal-Or O; Ghadiali Q; Dolz-Marco R; Engelbert M
    Graefes Arch Clin Exp Ophthalmol; 2019 Apr; 257(4):709-714. PubMed ID: 30617583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vitreous anatomy and the vitreomacular correlation.
    Kishi S
    Jpn J Ophthalmol; 2016 Jul; 60(4):239-73. PubMed ID: 27165709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observations by spectral-domain optical coherence tomography combined with simultaneous scanning laser ophthalmoscopy: imaging of the vitreous.
    Mojana F; Kozak I; Oster SF; Cheng L; Bartsch DU; Brar M; Yuson RM; Freeman WR
    Am J Ophthalmol; 2010 Apr; 149(4):641-50. PubMed ID: 20138610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo detecting mouse persistent hyperplastic primary vitreous by Spectralis Optical Coherence Tomography.
    Lian Q; Zhao M; Li T; Wu K; Zhu D; Shang B; Mei T; Li W; Lin Y; Mao F; Liu Y; Liu C; Lu L; Zhao L
    Exp Eye Res; 2019 Apr; 181():271-276. PubMed ID: 30817926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of a Myopic Normative Database for Analysis of Retinal Nerve Fiber Layer Thickness.
    Biswas S; Lin C; Leung CK
    JAMA Ophthalmol; 2016 Sep; 134(9):1032-9. PubMed ID: 27442185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.