These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 29444027)

  • 1. Controllable photonic crystal with periodic Raman gain in a coherent atomic medium.
    Zhang Z; Feng J; Liu X; Sheng J; Zhang Y; Zhang Y; Xiao M
    Opt Lett; 2018 Feb; 43(4):919-922. PubMed ID: 29444027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental realization of a reconfigurable Lieb photonic lattice in a coherent atomic medium.
    Liang S; Liu Z; Ning S; Zhang Y; Zhang Z
    Opt Lett; 2023 Feb; 48(3):803-806. PubMed ID: 36723593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation of diffraction pattern in two-dimensional optically induced atomic lattice.
    Yuan J; Wu C; Wang L; Chen G; Jia S
    Opt Lett; 2019 Sep; 44(17):4123-4126. PubMed ID: 31465344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optically-Induced Symmetry Switching in a Reconfigurable Kagome Photonic Lattice: From Flatband to Type-III Dirac Cones.
    Yu Q; Liu Z; Guo D; Liang S; Zhang Y; Zhang Z
    Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36145009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of light in a moving photonic lattice via atomic coherence.
    Zhang Z; Shen Y; Ning S; Liang S; Feng Y; Li C; Zhang Y; Xiao M
    Opt Lett; 2021 Sep; 46(17):4096-4099. PubMed ID: 34469948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Talbot effect of an electromagnetically induced square photonic lattice assisted by a spatial light modulator.
    Ning S; Lu J; Liang S; Feng Y; Li C; Zhang Z; Zhang Y
    Opt Lett; 2021 Oct; 46(19):5035-5038. PubMed ID: 34598263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transformation of electromagnetically induced transparency into enhanced absorption with a standing-wave coupling field in an Rb vapor cell.
    Bae IH; Moon HS; Kim MK; Lee L; Kim JB
    Opt Express; 2010 Jan; 18(2):1389-97. PubMed ID: 20173966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization of light in the atomic medium induced by the Hermite-cosine-Gauss field.
    Wei X; Chen B; Wang C; Cheng J
    Appl Opt; 2014 Nov; 53(33):7937-41. PubMed ID: 25607870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical diode made from a moving photonic crystal.
    Wang DW; Zhou HT; Guo MJ; Zhang JX; Evers J; Zhu SY
    Phys Rev Lett; 2013 Mar; 110(9):093901. PubMed ID: 23496710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optically controllable photonic structures with zero absorption.
    O'Brien C; Kocharovskaya O
    Phys Rev Lett; 2011 Sep; 107(13):137401. PubMed ID: 22026902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of Parity-Time Symmetry in Optically Induced Atomic Lattices.
    Zhang Z; Zhang Y; Sheng J; Yang L; Miri MA; Christodoulides DN; He B; Zhang Y; Xiao M
    Phys Rev Lett; 2016 Sep; 117(12):123601. PubMed ID: 27689270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semiclassical model of stimulated Raman scattering in photonic crystals.
    Florescu L; Zhang X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016611. PubMed ID: 16090111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geometric pattern evolution of photonic graphene in coherent atomic medium.
    Zhang H; Yuan J; Xiao L; Jia S; Wang L
    Opt Express; 2023 Mar; 31(7):11335-11343. PubMed ID: 37155771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Propagating multi-channel four-wave mixing process in the modulated moving photonic band gap.
    Hu M; Qin Z; Che J; Zhang Y
    Opt Express; 2020 Oct; 28(22):33448-33455. PubMed ID: 33115007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling discrete metal nanoparticles to photonic crystal surface resonant modes and application to Raman spectroscopy.
    Kim SM; Zhang W; Cunningham BT
    Opt Express; 2010 Mar; 18(5):4300-9. PubMed ID: 20389441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman-induced gratings in atomic media.
    Arkhipkin VG; Myslivets SA
    Opt Lett; 2014 Jun; 39(11):3223-6. PubMed ID: 24876018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Double photonic bandgaps dynamically induced in a tripod system of cold atoms.
    Cui CL; Wu JH; Gao JW; Zhang Y; Ba N
    Opt Express; 2010 Mar; 18(5):4538-46. PubMed ID: 20389466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superluminal reflection and transmission of light pulses via resonant four-wave mixing in cesium vapor.
    Jiang Q; Zhang Y; Wang D; Ahrens S; Zhang J; Zhu S
    Opt Express; 2016 Oct; 24(21):24451-24459. PubMed ID: 27828173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manipulating light pulses via dynamically controlled photonic band gap.
    André A; Lukin MD
    Phys Rev Lett; 2002 Sep; 89(14):143602. PubMed ID: 12366046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Propagation of optical vortices in a nonlinear atomic medium with a photonic band gap.
    Zhang Z; Ma D; Zhang Y; Cao M; Xu Z; Zhang Y
    Opt Lett; 2017 Mar; 42(6):1059-1062. PubMed ID: 28295091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.