These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 29444109)

  • 1. Population structure of the NPGS Senegalese sorghum collection and its evaluation to identify new disease resistant genes.
    Cuevas HE; Prom LK; Rosa-Valentin G
    PLoS One; 2018; 13(2):e0191877. PubMed ID: 29444109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of genetic diversity, agronomic traits, and anthracnose resistance in the NPGS Sudan Sorghum Core collection.
    Cuevas HE; Prom LK
    BMC Genomics; 2020 Jan; 21(1):88. PubMed ID: 31992189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic characterization of a core set of the USDA-NPGS Ethiopian sorghum germplasm collection: implications for germplasm conservation, evaluation, and utilization in crop improvement.
    Cuevas HE; Rosa-Valentin G; Hayes CM; Rooney WL; Hoffmann L
    BMC Genomics; 2017 Jan; 18(1):108. PubMed ID: 28125967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-Wide Association Mapping of Anthracnose (
    Cuevas HE; Prom LK; Cruet-Burgos CM
    G3 (Bethesda); 2019 Sep; 9(9):2879-2885. PubMed ID: 31289022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resistance to Grain Mold and Downy Mildew in a Mini-Core Collection of Sorghum Germplasm.
    Sharma R; Rao VP; Upadhyaya HD; Reddy VG; Thakur RP
    Plant Dis; 2010 Apr; 94(4):439-444. PubMed ID: 30754520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resistance to Foliar Diseases in a Mini-Core Collection of Sorghum Germplasm.
    Sharma R; Upadhyaya HD; Manjunatha SV; Rao VP; Thakur RP
    Plant Dis; 2012 Nov; 96(11):1629-1633. PubMed ID: 30727452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic diversity, population structure and anthracnose resistance response in a novel sweet sorghum diversity panel.
    Cuevas HE; Knoll JE; Prom LK; Stutts LR; Vermerris W
    Front Plant Sci; 2023; 14():1249555. PubMed ID: 37929175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pattern of genetic diversity of Guinea-race Sorghum bicolor (L.) Moench landraces as revealed with SSR markers.
    Folkertsma RT; Rattunde HF; Chandra S; Raju GS; Hash CT
    Theor Appl Genet; 2005 Aug; 111(3):399-409. PubMed ID: 15965652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the genetic basis of anthracnose resistance in Ethiopian sorghum through a genome-wide association study.
    Birhanu C; Girma G; Mekbib F; Nida H; Tirfessa A; Lule D; Bekeko Z; Ayana G; Bejiga T; Bedada G; Tola M; Legesse T; Alemu H; Admasu S; Bekele A; Mengiste T
    BMC Genomics; 2024 Jul; 25(1):677. PubMed ID: 38977981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Population structure in sorghum accessions from West Africa differing in race and maturity class.
    Bhosale SU; Stich B; Rattunde HF; Weltzien E; Haussmann BI; Hash CT; Melchinger AE; Parzies HK
    Genetica; 2011 Apr; 139(4):453-63. PubMed ID: 21455788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-Wide Association Mapping of Anthracnose (
    Cuevas HE; Prom LK; Cooper EA; Knoll JE; Ni X
    Plant Genome; 2018 Jul; 11(2):. PubMed ID: 30025025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comprehensive phenotypic and genomic characterization of Ethiopian sorghum germplasm defines core collection and reveals rich genetic potential in adaptive traits.
    Girma G; Nida H; Tirfessa A; Lule D; Bejiga T; Seyoum A; Mekonen M; Nega A; Dessalegn K; Birhanu C; Bekele A; Gebreyohannes A; Ayana G; Tesso T; Ejeta G; Mengiste T
    Plant Genome; 2020 Nov; 13(3):e20055. PubMed ID: 33217211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using Genotyping by Sequencing to Map Two Novel Anthracnose Resistance Loci in Sorghum bicolor.
    J Felderhoff T; M McIntyre L; Saballos A; Vermerris W
    G3 (Bethesda); 2016 Jul; 6(7):1935-46. PubMed ID: 27194807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide association analysis for response of Senegalese sorghum accessions to Texas isolates of anthracnose.
    Ahn E; Prom LK; Hu Z; Odvody G; Magill C
    Plant Genome; 2021 Jul; 14(2):e20097. PubMed ID: 33900689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic diversity of sorghum accessions resistant to greenbugs as assessed with AFLP markers.
    Wu YQ; Huang Y; Tauer CG; Porter DR
    Genome; 2006 Feb; 49(2):143-9. PubMed ID: 16498464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-Wide Association Mapping of Grain Mold Resistance in the US Sorghum Association Panel.
    Cuevas HE; Fermin-PĂ©rez RA; Prom LK; Cooper EA; Bean S; Rooney WL
    Plant Genome; 2019 Jun; 12(2):. PubMed ID: 31290917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RAPD-based SCAR marker SCA 12 linked to recessive gene conferring resistance to anthracnose in sorghum [Sorghum bicolor (L.) Moench].
    Singh M; Chaudhary K; Boora KS
    Theor Appl Genet; 2006 Dec; 114(1):187-92. PubMed ID: 17063339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A global view of genetic diversity in cultivated sorghums using a core collection.
    Deu M; Rattunde F; Chantereau J
    Genome; 2006 Feb; 49(2):168-80. PubMed ID: 16498467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-Wide Association Study on Resistance to Stalk Rot Diseases in Grain Sorghum.
    Adeyanju A; Little C; Yu J; Tesso T
    G3 (Bethesda); 2015 Apr; 5(6):1165-75. PubMed ID: 25882062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenotypic and molecular characterization of sweet sorghum accessions for bioenergy production.
    da Silva MJ; Pastina MM; de Souza VF; Schaffert RE; Carneiro PCS; Noda RW; Carneiro JES; Damasceno CMB; Parrella RADC
    PLoS One; 2017; 12(8):e0183504. PubMed ID: 28817696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.