BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 29444177)

  • 1. Kidney-differentiated cells derived from Lowe Syndrome patient's iPSCs show ciliogenesis defects and Six2 retention at the Golgi complex.
    Hsieh WC; Ramadesikan S; Fekete D; Aguilar RC
    PLoS One; 2018; 13(2):e0192635. PubMed ID: 29444177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Ocrl1 in primary cilia assembly.
    Madhivanan K; Ramadesikan S; Aguilar RC
    Int Rev Cell Mol Biol; 2015; 317():331-47. PubMed ID: 26008789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and function of the Lowe syndrome protein OCRL1.
    Lowe M
    Traffic; 2005 Sep; 6(9):711-9. PubMed ID: 16101675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lowe syndrome patient cells display mTOR- and RhoGTPase-dependent phenotypes alleviated by rapamycin and statins.
    Madhivanan K; Ramadesikan S; Hsieh WC; Aguilar MC; Hanna CB; Bacallao RL; Aguilar RC
    Hum Mol Genet; 2020 Jun; 29(10):1700-1715. PubMed ID: 32391547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Lowe syndrome protein OCRL1 is involved in primary cilia assembly.
    Coon BG; Hernandez V; Madhivanan K; Mukherjee D; Hanna CB; Barinaga-Rementeria Ramirez I; Lowe M; Beales PL; Aguilar RC
    Hum Mol Genet; 2012 Apr; 21(8):1835-47. PubMed ID: 22228094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ocrl1, a PtdIns(4,5)P(2) 5-phosphatase, is localized to the trans-Golgi network of fibroblasts and epithelial cells.
    Dressman MA; Olivos-Glander IM; Nussbaum RL; Suchy SF
    J Histochem Cytochem; 2000 Feb; 48(2):179-90. PubMed ID: 10639484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lowe syndrome patient fibroblasts display Ocrl1-specific cell migration defects that cannot be rescued by the homologous Inpp5b phosphatase.
    Coon BG; Mukherjee D; Hanna CB; Riese DJ; Lowe M; Aguilar RC
    Hum Mol Genet; 2009 Dec; 18(23):4478-91. PubMed ID: 19700499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oculocerebrorenal syndrome of Lowe: three mutations in the OCRL1 gene derived from three patients with different phenotypes.
    Kawano T; Indo Y; Nakazato H; Shimadzu M; Matsuda I
    Am J Med Genet; 1998 Jun; 77(5):348-55. PubMed ID: 9632163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The deficiency of PIP2 5-phosphatase in Lowe syndrome affects actin polymerization.
    Suchy SF; Nussbaum RL
    Am J Hum Genet; 2002 Dec; 71(6):1420-7. PubMed ID: 12428211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel OCRL1 mutation in a patient with the mild phenotype of Lowe syndrome.
    Sugimoto K; Nishi H; Miyazawa T; Fujita S; Okada M; Takemura T
    Tohoku J Exp Med; 2014 Mar; 232(3):163-6. PubMed ID: 24614960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the neuropsychiatric manifestations of Lowe syndrome using induced pluripotent stem cells: defective F-actin polymerization and WAVE-1 expression in neuronal cells.
    Barnes J; Salas F; Mokhtari R; Dolstra H; Pedrosa E; Lachman HM
    Mol Autism; 2018; 9():44. PubMed ID: 30147856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dent Disease with mutations in OCRL1.
    Hoopes RR; Shrimpton AE; Knohl SJ; Hueber P; Hoppe B; Matyus J; Simckes A; Tasic V; Toenshoff B; Suchy SF; Nussbaum RL; Scheinman SJ
    Am J Hum Genet; 2005 Feb; 76(2):260-7. PubMed ID: 15627218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional overlap between murine Inpp5b and Ocrl1 may explain why deficiency of the murine ortholog for OCRL1 does not cause Lowe syndrome in mice.
    Jänne PA; Suchy SF; Bernard D; MacDonald M; Crawley J; Grinberg A; Wynshaw-Boris A; Westphal H; Nussbaum RL
    J Clin Invest; 1998 May; 101(10):2042-53. PubMed ID: 9593760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impaired neural development in a zebrafish model for Lowe syndrome.
    Ramirez IB; Pietka G; Jones DR; Divecha N; Alia A; Baraban SC; Hurlstone AF; Lowe M
    Hum Mol Genet; 2012 Apr; 21(8):1744-59. PubMed ID: 22210625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carrier assessment in families with lowe oculocerebrorenal syndrome: novel mutations in the OCRL1 gene and correlation of direct DNA diagnosis with ocular examination.
    Röschinger W; Muntau AC; Rudolph G; Roscher AA; Kammerer S
    Mol Genet Metab; 2000 Mar; 69(3):213-22. PubMed ID: 10767176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oculocerebrorenal syndrome of Lowe (OCRL) controls leukemic T-cell survival by preventing excessive PI(4,5)P
    Chen H; Lu C; Tan Y; Weber-Boyvat M; Zheng J; Xu M; Xiao J; Liu S; Tang Z; Lai C; Li M; Olkkonen VM; Yan D; Zhong W
    J Biol Chem; 2023 Jun; 299(6):104812. PubMed ID: 37172724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ocular Pathology of Oculocerebrorenal Syndrome of Lowe: Novel Mutations and Genotype-Phenotype Analysis.
    Song E; Luo N; Alvarado JA; Lim M; Walnuss C; Neely D; Spandau D; Ghaffarieh A; Sun Y
    Sci Rep; 2017 May; 7(1):1442. PubMed ID: 28473699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lowe syndrome, a deficiency of phosphatidylinositol 4,5-bisphosphate 5-phosphatase in the Golgi apparatus.
    Suchy SF; Olivos-Glander IM; Nussabaum RL
    Hum Mol Genet; 1995 Dec; 4(12):2245-50. PubMed ID: 8634694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of missense mutations in the RhoGAP-homology domain on ocrl1 function.
    Lichter-Konecki U; Farber LW; Cronin JS; Suchy SF; Nussbaum RL
    Mol Genet Metab; 2006; 89(1-2):121-8. PubMed ID: 16777452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneity in Lowe Syndrome: Mutations Affecting the Phosphatase Domain of OCRL1 Differ in Impact on Enzymatic Activity and Severity of Cellular Phenotypes.
    Lee JJ; Ramadesikan S; Black AF; Christoffer C; Pacheco AFP; Subramanian S; Hanna CB; Barth G; Stauffacher CV; Kihara D; Aguilar RC
    Biomolecules; 2023 Mar; 13(4):. PubMed ID: 37189363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.