BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 29444806)

  • 1. Multiple Applications of a Transient CRISPR-Cas9 Coupled with Electroporation (TRACE) System in the
    Fan Y; Lin X
    Genetics; 2018 Apr; 208(4):1357-1372. PubMed ID: 29444806
    [No Abstract]   [Full Text] [Related]  

  • 2. Transformation of Cryptococcus neoformans by electroporation using a transient CRISPR-Cas9 expression (TRACE) system.
    Lin J; Fan Y; Lin X
    Fungal Genet Biol; 2020 May; 138():103364. PubMed ID: 32142753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and Related Species.
    Wang P
    mSphere; 2018 Jun; 3(3):. PubMed ID: 29898980
    [No Abstract]   [Full Text] [Related]  

  • 4. A 'suicide' CRISPR-Cas9 system to promote gene deletion and restoration by electroporation in Cryptococcus neoformans.
    Wang Y; Wei D; Zhu X; Pan J; Zhang P; Huo L; Zhu X
    Sci Rep; 2016 Aug; 6():31145. PubMed ID: 27503169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of stable mutants and targeted gene deletion strains in Cryptococcus neoformans through electroporation.
    Lin X; Chacko N; Wang L; Pavuluri Y
    Med Mycol; 2015 Apr; 53(3):225-34. PubMed ID: 25541555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted Genome Editing via CRISPR in the Pathogen Cryptococcus neoformans.
    Arras SD; Chua SM; Wizrah MS; Faint JA; Yap AS; Fraser JA
    PLoS One; 2016; 11(10):e0164322. PubMed ID: 27711143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae.
    Laughery MF; Hunter T; Brown A; Hoopes J; Ostbye T; Shumaker T; Wyrick JJ
    Yeast; 2015 Dec; 32(12):711-20. PubMed ID: 26305040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biolistic Transformation of Cryptococcus neoformans.
    Toffaletti DL; Tenor JL; Perfect JR
    Methods Mol Biol; 2024; 2775():59-79. PubMed ID: 38758311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a generic CRISPR-Cas9 approach using the same sgRNA to perform gene editing at distinct loci.
    Najah S; Saulnier C; Pernodet JL; Bury-Moné S
    BMC Biotechnol; 2019 Mar; 19(1):18. PubMed ID: 30894153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An intergenic "safe haven" region in Cryptococcus neoformans serotype D genomes.
    Fan Y; Lin X
    Fungal Genet Biol; 2020 Nov; 144():103464. PubMed ID: 32947034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene disruption by biolistic transformation in serotype D strains of Cryptococcus neoformans.
    Davidson RC; Cruz MC; Sia RA; Allen B; Alspaugh JA; Heitman J
    Fungal Genet Biol; 2000 Feb; 29(1):38-48. PubMed ID: 10779398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The CRISPR toolbox in medical mycology: State of the art and perspectives.
    Morio F; Lombardi L; Butler G
    PLoS Pathog; 2020 Jan; 16(1):e1008201. PubMed ID: 31945142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of PDX-1 mutant porcine blastocysts by introducing CRISPR/Cas9-system into porcine zygotes via electroporation.
    Tanihara F; Hirata M; Nguyen NT; Le QA; Hirano T; Takemoto T; Nakai M; Fuchimoto DI; Otoi T
    Anim Sci J; 2019 Jan; 90(1):55-61. PubMed ID: 30368976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short homology-directed repair using optimized Cas9 in the pathogen Cryptococcus neoformans enables rapid gene deletion and tagging.
    Huang MY; Joshi MB; Boucher MJ; Lee S; Loza LC; Gaylord EA; Doering TL; Madhani HD
    Genetics; 2022 Jan; 220(1):. PubMed ID: 34791226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene transfer in Cryptococcus neoformans by use of biolistic delivery of DNA.
    Toffaletti DL; Rude TH; Johnston SA; Durack DT; Perfect JR
    J Bacteriol; 1993 Mar; 175(5):1405-11. PubMed ID: 8444802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-Cas9-Guided Genome Engineering in C. elegans.
    Kim HM; Colaiácovo MP
    Curr Protoc Mol Biol; 2016 Jul; 115():31.7.1-31.7.18. PubMed ID: 27366893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Editing of the Nuclear
    Guzmán-Zapata D; Sandoval-Vargas JM; Macedo-Osorio KS; Salgado-Manjarrez E; Castrejón-Flores JL; Oliver-Salvador MDC; Durán-Figueroa NV; Nogué F; Badillo-Corona JA
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30871076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR-Cas9-Mediated Genome Editing and Transcriptional Control in Yarrowia lipolytica.
    Schwartz C; Wheeldon I
    Methods Mol Biol; 2018; 1772():327-345. PubMed ID: 29754237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High Efficiency CRISPR/Cas9-mediated Gene Editing in Primary Human T-cells Using Mutant Adenoviral E4orf6/E1b55k "Helper" Proteins.
    Gwiazda KS; Grier AE; Sahni J; Burleigh SM; Martin U; Yang JG; Popp NA; Krutein MC; Khan IF; Jacoby K; Jensen MC; Rawlings DJ; Scharenberg AM
    Mol Ther; 2016 Sep; 24(9):1570-80. PubMed ID: 27203437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.