These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 29445038)

  • 21. Coarse-graining bacteria colonies for modelling critical solute distributions in picolitre bioreactors for bacterial studies on single-cell level.
    Westerwalbesloh C; Grünberger A; Wiechert W; Kohlheyer D; von Lieres E
    Microb Biotechnol; 2017 Jul; 10(4):845-857. PubMed ID: 28371389
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A microfluidic co-cultivation platform to investigate microbial interactions at defined microenvironments.
    Burmeister A; Hilgers F; Langner A; Westerwalbesloh C; Kerkhoff Y; Tenhaef N; Drepper T; Kohlheyer D; von Lieres E; Noack S; Grünberger A
    Lab Chip; 2018 Dec; 19(1):98-110. PubMed ID: 30488920
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantification of cell size distribution as applied to the growth of Corynebacterium glutamicum.
    Gayen K; Venkatesh KV
    Microbiol Res; 2008; 163(5):586-93. PubMed ID: 17008078
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Actinobacterium Corynebacterium glutamicum, an Industrial Workhorse.
    Lee JY; Na YA; Kim E; Lee HS; Kim P
    J Microbiol Biotechnol; 2016 May; 26(5):807-22. PubMed ID: 26838341
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolated microbial single cells and resulting micropopulations grow faster in controlled environments.
    Dusny C; Fritzsch FS; Frick O; Schmid A
    Appl Environ Microbiol; 2012 Oct; 78(19):7132-6. PubMed ID: 22820335
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anaerobic growth of Corynebacterium glutamicum via mixed-acid fermentation.
    Michel A; Koch-Koerfges A; Krumbach K; Brocker M; Bott M
    Appl Environ Microbiol; 2015 Nov; 81(21):7496-508. PubMed ID: 26276118
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantifying a Biocatalytic Product from a Few Living Microbial Cells Using Microfluidic Cultivation Coupled to FT-ICR-MS.
    Dusny C; Lohse M; Reemtsma T; Schmid A; Lechtenfeld OJ
    Anal Chem; 2019 Jun; 91(11):7012-7018. PubMed ID: 31055912
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diffusion-Limited Growth of Microbial Colonies.
    Tronnolone H; Tam A; Szenczi Z; Green JEF; Balasuriya S; Tek EL; Gardner JM; Sundstrom JF; Jiranek V; Oliver SG; Binder BJ
    Sci Rep; 2018 Apr; 8(1):5992. PubMed ID: 29662092
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamic Environmental Control in Microfluidic Single-Cell Cultivations: From Concepts to Applications.
    Täuber S; von Lieres E; Grünberger A
    Small; 2020 Apr; 16(16):e1906670. PubMed ID: 32157796
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detection of D-ornithine extracellularly produced by Corynebacterium glutamicum ATCC 13032::argF.
    Matsui D; Oikawa T
    Biosci Biotechnol Biochem; 2010; 74(12):2507-10. PubMed ID: 21187642
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolic network analysis of lysine producing Corynebacterium glutamicum at a miniaturized scale.
    Wittmann C; Kim HM; Heinzle E
    Biotechnol Bioeng; 2004 Jul; 87(1):1-6. PubMed ID: 15211482
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of 3D multi-layer microfluidic gradient generator.
    Ha JH; Kim TH; Lee JM; Ahrberg CD; Chung BG
    Electrophoresis; 2017 Jan; 38(2):270-277. PubMed ID: 27801504
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Observing Nutrient Gradients, Gene Expression and Growth Variation Using the "Yeast Machine" Microfluidic Device.
    Marinkovic ZS; Vulin C; Acman M; Song X; Di Meglio JM; Lindner AB; Hersen P
    Bio Protoc; 2020 Jul; 10(13):e3668. PubMed ID: 33659338
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A role of the cspA gene encoding a mycolyltransferase in the growth under alkaline conditions of Corynebacterium glutamicum.
    Takeshita R; Ito H; Wachi M
    Biosci Biotechnol Biochem; 2010; 74(8):1617-23. PubMed ID: 20699568
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of a new platform for secretory production of recombinant proteins in Corynebacterium glutamicum.
    Yim SS; Choi JW; Lee RJ; Lee YJ; Lee SH; Kim SY; Jeong KJ
    Biotechnol Bioeng; 2016 Jan; 113(1):163-72. PubMed ID: 26134574
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The conserved actinobacterial transcriptional regulator FtsR controls expression of ftsZ and further target genes and influences growth and cell division in Corynebacterium glutamicum.
    Kraxner KJ; Polen T; Baumgart M; Bott M
    BMC Microbiol; 2019 Aug; 19(1):179. PubMed ID: 31382874
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microfluidics for Biotechnology: Bridging Gaps to Foster Microfluidic Applications.
    Ortseifen V; Viefhues M; Wobbe L; Grünberger A
    Front Bioeng Biotechnol; 2020; 8():589074. PubMed ID: 33282849
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diffusion characteristics of a T-type microchannel with different configurations and inlet angles.
    Yang J; Pi X; Zhang L; Liu X; Yang J; Cao Y; Zhang W; Zheng X
    Anal Sci; 2007 Jun; 23(6):697-703. PubMed ID: 17575354
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidics for bacterial chemotaxis.
    Ahmed T; Shimizu TS; Stocker R
    Integr Biol (Camb); 2010 Nov; 2(11-12):604-29. PubMed ID: 20967322
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of different CO2/HCO3- levels on metabolism and regulation in Corynebacterium glutamicum.
    Blombach B; Buchholz J; Busche T; Kalinowski J; Takors R
    J Biotechnol; 2013 Dec; 168(4):331-40. PubMed ID: 24140290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.