These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 29445101)

  • 1. Projective measurement onto arbitrary superposition of weak coherent state bases.
    Izumi S; Takeoka M; Wakui K; Fujiwara M; Ema K; Sasaki M
    Sci Rep; 2018 Feb; 8(1):2999. PubMed ID: 29445101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical coherent state discrimination using a closed-loop quantum measurement.
    Cook RL; Martin PJ; Geremia JM
    Nature; 2007 Apr; 446(7137):774-7. PubMed ID: 17429395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiphoton Jaynes-Cummings Model: Arbitrary Rotations in Fock Space and Quantum Filters.
    Villas-Boas CJ; Rossatto DZ
    Phys Rev Lett; 2019 Mar; 122(12):123604. PubMed ID: 30978040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vortex phase qubit: generating arbitrary, counterrotating, coherent superpositions in Bose-Einstein condensates via optical angular momentum beams.
    Kapale KT; Dowling JP
    Phys Rev Lett; 2005 Oct; 95(17):173601. PubMed ID: 16383828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of a superposition of odd photon number states for quantum information networks.
    Neergaard-Nielsen JS; Nielsen BM; Hettich C; Mølmer K; Polzik ES
    Phys Rev Lett; 2006 Aug; 97(8):083604. PubMed ID: 17026305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Creating a Superposition of Unknown Quantum States.
    Oszmaniec M; Grudka A; Horodecki M; Wójcik A
    Phys Rev Lett; 2016 Mar; 116(11):110403. PubMed ID: 27035290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlocal quantum macroscopic superposition in a high-thermal low-purity state.
    Brezinski ME; Liu B
    Phys Rev A; 2008 Dec; 78(6):. PubMed ID: 24204102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial Coherent States of Light by Multiphoton Interference in a Single-Photon Stream.
    Steindl P; Snijders H; Westra G; Hissink E; Iakovlev K; Polla S; Frey JA; Norman J; Gossard AC; Bowers JE; Bouwmeester D; Löffler W
    Phys Rev Lett; 2021 Apr; 126(14):143601. PubMed ID: 33891441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical continuous-variable qubit.
    Neergaard-Nielsen JS; Takeuchi M; Wakui K; Takahashi H; Hayasaka K; Takeoka M; Sasaki M
    Phys Rev Lett; 2010 Jul; 105(5):053602. PubMed ID: 20867917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tomography of a Feedback Measurement with Photon Detection.
    Izumi S; Neergaard-Nielsen JS; Andersen UL
    Phys Rev Lett; 2020 Feb; 124(7):070502. PubMed ID: 32142330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iterative tailoring of optical quantum states with homodyne measurements.
    Etesse J; Kanseri B; Tualle-Brouri R
    Opt Express; 2014 Dec; 22(24):30357-67. PubMed ID: 25606964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum Teleportation Between Discrete and Continuous Encodings of an Optical Qubit.
    Ulanov AE; Sychev D; Pushkina AA; Fedorov IA; Lvovsky AI
    Phys Rev Lett; 2017 Apr; 118(16):160501. PubMed ID: 28474950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-chip generation of high-dimensional entangled quantum states and their coherent control.
    Kues M; Reimer C; Roztocki P; Cortés LR; Sciara S; Wetzel B; Zhang Y; Cino A; Chu ST; Little BE; Moss DJ; Caspani L; Azaña J; Morandotti R
    Nature; 2017 Jun; 546(7660):622-626. PubMed ID: 28658228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental demonstration of five-photon entanglement and open-destination teleportation.
    Zhao Z; Chen YA; Zhang AN; Yang T; Briegel HJ; Pan JW
    Nature; 2004 Jul; 430(6995):54-8. PubMed ID: 15229594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of entangling properties of quantum measurement via two-mode quantum detector tomography using coherent state probes.
    Yokoyama S; Dalla Pozza N; Serikawa T; Kuntz KB; Wheatley TA; Dong D; Huntington EH; Yonezawa H
    Opt Express; 2019 Nov; 27(23):34416-34433. PubMed ID: 31878489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Achieving Heisenberg-Scaling Precision with Projective Measurement on Single Photons.
    Chen G; Zhang L; Zhang WH; Peng XX; Xu L; Liu ZD; Xu XY; Tang JS; Sun YN; He DY; Xu JS; Zhou ZQ; Li CF; Guo GC
    Phys Rev Lett; 2018 Aug; 121(6):060506. PubMed ID: 30141679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coherent control to prepare an InAs quantum dot for spin-photon entanglement.
    Webster LA; Truex K; Duan LM; Steel DG; Bracker AS; Gammon D; Sham LJ
    Phys Rev Lett; 2014 Mar; 112(12):126801. PubMed ID: 24724666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complete quantum control of a single quantum dot spin using ultrafast optical pulses.
    Press D; Ladd TD; Zhang B; Yamamoto Y
    Nature; 2008 Nov; 456(7219):218-21. PubMed ID: 19005550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Five Measurement Bases Determine Pure Quantum States on Any Dimension.
    Goyeneche D; Cañas G; Etcheverry S; Gómez ES; Xavier GB; Lima G; Delgado A
    Phys Rev Lett; 2015 Aug; 115(9):090401. PubMed ID: 26371631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creation of superposition of arbitrary states encoded in two high-Q cavities.
    Liu T; Zhang Y; Guo BQ; Yu CS; Zhang WN
    Opt Express; 2019 Sep; 27(19):27168-27182. PubMed ID: 31674583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.