BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 29445519)

  • 1. Highly efficient generation of knock-in transgenic medaka by CRISPR/Cas9-mediated genome engineering.
    Watakabe I; Hashimoto H; Kimura Y; Yokoi S; Naruse K; Higashijima SI
    Zoological Lett; 2018; 4():3. PubMed ID: 29445519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering.
    Kimura Y; Hisano Y; Kawahara A; Higashijima S
    Sci Rep; 2014 Oct; 4():6545. PubMed ID: 25293390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9 nickase-mediated efficient and seamless knock-in of lethal genes in the medaka fish Oryzias latipes.
    Murakami Y; Futamata R; Horibe T; Ueda K; Kinoshita M
    Dev Growth Differ; 2020 Dec; 62(9):554-567. PubMed ID: 33155277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of knock-in lampreys by CRISPR-Cas9-mediated genome engineering.
    Suzuki DG; Wada H; Higashijima SI
    Sci Rep; 2021 Oct; 11(1):19836. PubMed ID: 34615907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Establishment of an Integrated CRISPR/Cas9 Plasmid System for Simple and Efficient Genome Editing in Medaka In Vitro and In Vivo.
    Zhang Z; Wang J; Li J; Liu X; Liu L; Zhao C; Tao W; Wang D; Wei J
    Biology (Basel); 2023 Feb; 12(2):. PubMed ID: 36829610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-step knock-in of two antimicrobial peptide transgenes at multiple loci of catfish by CRISPR/Cas9-mediated multiplex genome engineering.
    Wang J; Torres IM; Shang M; Al-Armanazi J; Dilawar H; Hettiarachchi DU; Paladines-Parrales A; Chambers B; Pottle K; Soman M; Su B; Dunham RA
    Int J Biol Macromol; 2024 Mar; 260(Pt 1):129384. PubMed ID: 38224812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of albino medaka (Oryzias latipes) by CRISPR/Cas9.
    Fang J; Chen T; Pan Q; Wang Q
    J Exp Zool B Mol Dev Evol; 2018 Jun; 330(4):242-246. PubMed ID: 29873175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair.
    Auer TO; Duroure K; De Cian A; Concordet JP; Del Bene F
    Genome Res; 2014 Jan; 24(1):142-53. PubMed ID: 24179142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas-mediated knock-in via non-homologous end-joining in the crustacean Daphnia magna.
    Kumagai H; Nakanishi T; Matsuura T; Kato Y; Watanabe H
    PLoS One; 2017; 12(10):e0186112. PubMed ID: 29045453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endogenous protein tagging in medaka using a simplified CRISPR/Cas9 knock-in approach.
    Seleit A; Aulehla A; Paix A
    Elife; 2021 Dec; 10():. PubMed ID: 34870593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient genome editing using CRISPR/Cas9 ribonucleoprotein approach in cultured Medaka fish cells.
    Liu Q; Yuan Y; Zhu F; Hong Y; Ge R
    Biol Open; 2018 Aug; 7(8):. PubMed ID: 30072445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatio-temporal control of targeted gene expression in combination with CRISPR/Cas and Tet-On systems in Medaka.
    Kayo D; Kimura S; Yamazaki T; Naruse K; Takeuchi H; Ansai S
    Genesis; 2024 Feb; 62(1):e23519. PubMed ID: 37226848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted mutagenesis using CRISPR/Cas system in medaka.
    Ansai S; Kinoshita M
    Biol Open; 2014 Apr; 3(5):362-71. PubMed ID: 24728957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted integration in human cells through single crossover mediated by ZFN or CRISPR/Cas9.
    Liu X; Wang M; Qin Y; Shi X; Cong P; Chen Y; He Z
    BMC Biotechnol; 2018 Oct; 18(1):66. PubMed ID: 30340581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An effective double gene knock-in strategy using small-molecule L755507 in the medaka fish (Oryzias latipes).
    Murakami Y; Kobayashi T
    Genesis; 2022 Feb; 60(1-2):e23465. PubMed ID: 35072325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Generation of Knock-In Zebrafish Models for Inherited Disorders Using CRISPR-Cas9 Ribonucleoprotein Complexes.
    de Vrieze E; de Bruijn SE; Reurink J; Broekman S; van de Riet V; Aben M; Kremer H; van Wijk E
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of albino via SLC45a2 gene targeting by CRISPR/Cas9 in the marine medaka Oryzias melastigma.
    Jeong CB; Kang HM; Hong SA; Byeon E; Lee JS; Lee YH; Choi IY; Bae S; Lee JS
    Mar Pollut Bull; 2020 May; 154():111038. PubMed ID: 32174491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas9-Mediated Targeted Knockin of Exogenous Reporter Genes in Zebrafish.
    Kawahara A
    Methods Mol Biol; 2017; 1630():165-173. PubMed ID: 28643258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-Specific Gene Knock-Out and On-Site Heterologous Gene Overexpression in
    Kim J; Lee S; Baek K; Jin E
    Front Plant Sci; 2020; 11():306. PubMed ID: 32265959
    [No Abstract]   [Full Text] [Related]  

  • 20. Establishment of transgenic epithelium-specific Cre-recombinase driving medaka (Oryzias latipes) by homology repair mediated knock-in.
    Watanabe Y; Katsumura E; Domon T; Ishikawa Y; Oguri R; Takashima M; Meng Q; Kinoshita M; Hashimoto H; Hitomi K
    Biosci Biotechnol Biochem; 2023 Oct; 87(11):1285-1294. PubMed ID: 37607777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.