These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 29445780)

  • 21. MOFs with 12-Coordinate 5f-Block Metal Centers.
    Lv K; Urbank C; Patzschke M; März J; Kaden P; Weiss S; Schmidt M
    J Am Chem Soc; 2022 Feb; 144(7):2879-2884. PubMed ID: 35143201
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Potential of metal-organic frameworks for separation of xenon and krypton.
    Banerjee D; Cairns AJ; Liu J; Motkuri RK; Nune SK; Fernandez CA; Krishna R; Strachan DM; Thallapally PK
    Acc Chem Res; 2015 Feb; 48(2):211-9. PubMed ID: 25479165
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic separation.
    Gu ZY; Yang CX; Chang N; Yan XP
    Acc Chem Res; 2012 May; 45(5):734-45. PubMed ID: 22404189
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Using functional nano- and microparticles for the preparation of metal-organic framework composites with novel properties.
    Doherty CM; Buso D; Hill AJ; Furukawa S; Kitagawa S; Falcaro P
    Acc Chem Res; 2014 Feb; 47(2):396-405. PubMed ID: 24205847
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions.
    Li J; Wang X; Zhao G; Chen C; Chai Z; Alsaedi A; Hayat T; Wang X
    Chem Soc Rev; 2018 Apr; 47(7):2322-2356. PubMed ID: 29498381
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanoarchitectures for Metal-Organic Framework-Derived Nanoporous Carbons toward Supercapacitor Applications.
    Salunkhe RR; Kaneti YV; Kim J; Kim JH; Yamauchi Y
    Acc Chem Res; 2016 Dec; 49(12):2796-2806. PubMed ID: 27993000
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units.
    Rosi NL; Kim J; Eddaoudi M; Chen B; O'Keeffe M; Yaghi OM
    J Am Chem Soc; 2005 Feb; 127(5):1504-18. PubMed ID: 15686384
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Theoretical Investigation of Actinide Ligation in Aqueous and Organic Phase for Nuclear Waste Treatment.
    Laub JA; Vogiatzis KD
    J Phys Chem A; 2023 Jul; 127(26):5523-5533. PubMed ID: 37352367
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Zr-based metal-organic frameworks: design, synthesis, structure, and applications.
    Bai Y; Dou Y; Xie LH; Rutledge W; Li JR; Zhou HC
    Chem Soc Rev; 2016 Apr; 45(8):2327-67. PubMed ID: 26886869
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Environmental speciation of actinides.
    Maher K; Bargar JR; Brown GE
    Inorg Chem; 2013 Apr; 52(7):3510-32. PubMed ID: 23137032
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MOF-based electronic and opto-electronic devices.
    Stavila V; Talin AA; Allendorf MD
    Chem Soc Rev; 2014 Aug; 43(16):5994-6010. PubMed ID: 24802763
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Theoretical actinide molecular science.
    Schreckenbach G; Shamov GA
    Acc Chem Res; 2010 Jan; 43(1):19-29. PubMed ID: 19719099
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An updated roadmap for the integration of metal-organic frameworks with electronic devices and chemical sensors.
    Stassen I; Burtch N; Talin A; Falcaro P; Allendorf M; Ameloot R
    Chem Soc Rev; 2017 Jun; 46(11):3185-3241. PubMed ID: 28452388
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Syntheses and characterization of some solid-state actinide (Th, U, Np) compounds.
    Bugaris DE; Ibers JA
    Dalton Trans; 2010 Jul; 39(26):5949-64. PubMed ID: 20386805
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High Methane Storage Working Capacity in Metal-Organic Frameworks with Acrylate Links.
    Jiang J; Furukawa H; Zhang YB; Yaghi OM
    J Am Chem Soc; 2016 Aug; 138(32):10244-51. PubMed ID: 27442620
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Paving the way for the synthesis of a series of divalent actinide complexes: a theoretical perspective.
    Wu QY; Lan JH; Wang CZ; Cheng ZP; Chai ZF; Gibson JK; Shi WQ
    Dalton Trans; 2016 Feb; 45(7):3102-10. PubMed ID: 26777518
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metal-Organic Frameworks as Platforms for Functional Materials.
    Cui Y; Li B; He H; Zhou W; Chen B; Qian G
    Acc Chem Res; 2016 Mar; 49(3):483-93. PubMed ID: 26878085
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Friends or Foes: Fundamental Principles of Th-Organic Scaffold Chemistry Using Zr-Analogs as a Guide.
    Lim J; Park KC; Thaggard GC; Liu Y; Maldeni Kankanamalage BKP; Toler DJ; Ta AT; Kittikhunnatham P; Smith MD; Phillpot SR; Shustova NB
    J Am Chem Soc; 2024 May; 146(17):12155-12166. PubMed ID: 38648612
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A roadmap to implementing metal-organic frameworks in electronic devices: challenges and critical directions.
    Allendorf MD; Schwartzberg A; Stavila V; Talin AA
    Chemistry; 2011 Oct; 17(41):11372-88. PubMed ID: 21932243
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Redox-Innocent Uranium(IV)-Quinoid Metal-Organic Framework.
    Refn VE; Kubus M; Mossin S; Larsen RW; Pedersen KS
    ACS Omega; 2020 Feb; 5(7):3462-3466. PubMed ID: 32118160
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.