These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 29445805)
1. Transition of surface phase of cobalt oxide during CO oxidation. Tang Y; Ma L; Dou J; Andolina CM; Li Y; Ma H; House SD; Zhang X; Yang J; Tao FF Phys Chem Chem Phys; 2018 Feb; 20(9):6440-6449. PubMed ID: 29445805 [TBL] [Abstract][Full Text] [Related]
2. WGS catalysis and in situ studies of CoO(1-x), PtCo(n)/Co3O4, and Pt(m)Co(m')/CoO(1-x) nanorod catalysts. Zhang S; Shan JJ; Zhu Y; Frenkel AI; Patlolla A; Huang W; Yoon SJ; Wang L; Yoshida H; Takeda S; Tao FF J Am Chem Soc; 2013 Jun; 135(22):8283-93. PubMed ID: 23611190 [TBL] [Abstract][Full Text] [Related]
3. Understanding Catalyst Surfaces during Catalysis through Near Ambient Pressure X-ray Photoelectron Spectroscopy. Nguyen L; Tao FF; Tang Y; Dou J; Bao XJ Chem Rev; 2019 Jun; 119(12):6822-6905. PubMed ID: 31181905 [TBL] [Abstract][Full Text] [Related]
4. Operando Insights into CO Oxidation on Cobalt Oxide Catalysts by NAP-XPS, FTIR, and XRD. Lukashuk L; Yigit N; Rameshan R; Kolar E; Teschner D; Hävecker M; Knop-Gericke A; Schlögl R; Föttinger K; Rupprechter G ACS Catal; 2018 Sep; 8(9):8630-8641. PubMed ID: 30221030 [TBL] [Abstract][Full Text] [Related]
5. Thermal evolution of cobalt deposits on Co3O4(111): atomically dispersed cobalt, two-dimensional CoO islands, and metallic Co nanoparticles. Mehl S; Ferstl P; Schuler M; Toghan A; Brummel O; Hammer L; Schneider MA; Libuda J Phys Chem Chem Phys; 2015 Sep; 17(36):23538-46. PubMed ID: 26299410 [TBL] [Abstract][Full Text] [Related]
6. Porous cube-aggregated Co3O4 microsphere-supported gold nanoparticles for oxidation of carbon monoxide and toluene. Yang H; Dai H; Deng J; Xie S; Han W; Tan W; Jiang Y; Au CT ChemSusChem; 2014 Jun; 7(6):1745-54. PubMed ID: 24903144 [TBL] [Abstract][Full Text] [Related]
7. Enhanced CO oxidation rates at the interface of mesoporous oxides and Pt nanoparticles. An K; Alayoglu S; Musselwhite N; Plamthottam S; Melaet G; Lindeman AE; Somorjai GA J Am Chem Soc; 2013 Nov; 135(44):16689-96. PubMed ID: 24090187 [TBL] [Abstract][Full Text] [Related]
8. Highly Ordered Mesoporous Cobalt-Containing Oxides: Structure, Catalytic Properties, and Active Sites in Oxidation of Carbon Monoxide. Gu D; Jia CJ; Weidenthaler C; Bongard HJ; Spliethoff B; Schmidt W; Schüth F J Am Chem Soc; 2015 Sep; 137(35):11407-18. PubMed ID: 26301797 [TBL] [Abstract][Full Text] [Related]
9. The cobalt oxidation state in preferential CO oxidation on CoO Rattigan E; Sun Z; Gallo T; Nino MA; Parreiras SO; Martín-Fuentes C; Martin-Romano JC; Écija D; Escudero C; Villar I; Rodríguez-Fernández J; Lauritsen JV Phys Chem Chem Phys; 2022 Apr; 24(16):9236-9246. PubMed ID: 35388844 [TBL] [Abstract][Full Text] [Related]
10. Understanding the Oxygen Evolution Reaction Mechanism on CoO Favaro M; Yang J; Nappini S; Magnano E; Toma FM; Crumlin EJ; Yano J; Sharp ID J Am Chem Soc; 2017 Jul; 139(26):8960-8970. PubMed ID: 28598604 [TBL] [Abstract][Full Text] [Related]
11. Effect of Cobalt Oxides on the Catalytic Combustion of Odor. Yoon HS; Seo SG J Nanosci Nanotechnol; 2021 Jul; 21(7):4077-4080. PubMed ID: 33715748 [TBL] [Abstract][Full Text] [Related]
12. Efficient Removal of Methane over Cobalt-Monoxide-Doped AuPd Nanocatalysts. Xie S; Liu Y; Deng J; Zang S; Zhang Z; Arandiyan H; Dai H Environ Sci Technol; 2017 Feb; 51(4):2271-2279. PubMed ID: 28103021 [TBL] [Abstract][Full Text] [Related]
13. Facile synthesis of Co₃O₄@CNT with high catalytic activity for CO oxidation under moisture-rich conditions. Kuo CH; Li W; Song W; Luo Z; Poyraz AS; Guo Y; Ma AW; Suib SL; He J ACS Appl Mater Interfaces; 2014 Jul; 6(14):11311-7. PubMed ID: 24960167 [TBL] [Abstract][Full Text] [Related]
15. Spectroscopic characterization of Co3O4 catalyst doped with CeO2 and PdO for methane catalytic combustion. Jodłowski PJ; Jędrzejczyk RJ; Rogulska A; Wach A; Kuśtrowski P; Sitarz M; Łojewski T; Kołodziej A; Łojewska J Spectrochim Acta A Mol Biomol Spectrosc; 2014 Oct; 131():696-701. PubMed ID: 24913565 [TBL] [Abstract][Full Text] [Related]
16. In situ XAFS study on the formation process of cobalt carbide by Fischer-Tropsch reaction. Liu Y; Wu D; Yu F; Yang R; Zhang H; Sun F; Zhong L; Jiang Z Phys Chem Chem Phys; 2019 May; 21(20):10791-10797. PubMed ID: 31086917 [TBL] [Abstract][Full Text] [Related]
17. A comparative study of spinel structured Mn3O4, Co3O4 and Fe3O4 nanoparticles in catalytic oxidation of phenolic contaminants in aqueous solutions. Saputra E; Muhammad S; Sun H; Ang HM; Tadé MO; Wang S J Colloid Interface Sci; 2013 Oct; 407():467-73. PubMed ID: 23891446 [TBL] [Abstract][Full Text] [Related]
18. Porous hexagonal nanoplate cobalt oxide derived from a coordination polymer as an effective catalyst for activating Oxone in water. Tuan DD; Hung C; Da Oh W; Ghanbari F; Lin JY; Lin KA Chemosphere; 2020 Dec; 261():127552. PubMed ID: 32731015 [TBL] [Abstract][Full Text] [Related]
19. Mesoporous cobalt monoxide-supported platinum nanoparticles: Superior catalysts for the oxidative removal of benzene. Yang J; Xue Y; Liu Y; Deng J; Jiang X; Chen H; Dai H J Environ Sci (China); 2020 Apr; 90():170-179. PubMed ID: 32081313 [TBL] [Abstract][Full Text] [Related]
20. Geometric Occupancy and Oxidation State Requirements of Cations in Cobalt Oxides for Oxygen Reduction Reaction. Liu J; Bao H; Zhang B; Hua Q; Shang M; Wang J; Jiang L ACS Appl Mater Interfaces; 2019 Apr; 11(13):12525-12534. PubMed ID: 30868871 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]