These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

497 related articles for article (PubMed ID: 29445854)

  • 1. Constrained minimization problems for the reproduction number in meta-population models.
    Poghotanyan G; Feng Z; Glasser JW; Hill AN
    J Math Biol; 2018 Dec; 77(6-7):1795-1831. PubMed ID: 29445854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Traveling wave solutions in a two-group SIR epidemic model with constant recruitment.
    Zhao L; Wang ZC; Ruan S
    J Math Biol; 2018 Dec; 77(6-7):1871-1915. PubMed ID: 29564532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implications for infectious disease models of heterogeneous mixing on control thresholds.
    Hill AN; Glasser JW; Feng Z
    J Math Biol; 2023 Mar; 86(4):53. PubMed ID: 36884154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basic reproduction ratios for periodic and time-delayed compartmental models with impulses.
    Bai Z; Zhao XQ
    J Math Biol; 2020 Mar; 80(4):1095-1117. PubMed ID: 31768629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of non-homogeneous mixing on final epidemic size in a meta-population model.
    Cui J; Zhang Y; Feng Z
    J Biol Dyn; 2019; 13(sup1):31-46. PubMed ID: 29909739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Network Epidemic Model with Preventive Rewiring: Comparative Analysis of the Initial Phase.
    Britton T; Juher D; Saldaña J
    Bull Math Biol; 2016 Dec; 78(12):2427-2454. PubMed ID: 27800576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global stability for epidemic models on multiplex networks.
    Huang YJ; Juang J; Liang YH; Wang HY
    J Math Biol; 2018 May; 76(6):1339-1356. PubMed ID: 28884277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A periodic SEIRS epidemic model with a time-dependent latent period.
    Li F; Zhao XQ
    J Math Biol; 2019 Apr; 78(5):1553-1579. PubMed ID: 30607509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An elaboration of theory about preventing outbreaks in homogeneous populations to include heterogeneity or preferential mixing.
    Feng Z; Hill AN; Smith PJ; Glasser JW
    J Theor Biol; 2015 Dec; 386():177-87. PubMed ID: 26375548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Non-homogeneous Mixing and Asymptomatic Individuals on Final Epidemic Size and Basic Reproduction Number in a Meta-Population Model.
    Cui J; Wu Y; Guo S
    Bull Math Biol; 2022 Feb; 84(3):38. PubMed ID: 35132526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A structured population model with diffusion in structure space.
    Pugliese A; Milner F
    J Math Biol; 2018 Dec; 77(6-7):2079-2102. PubMed ID: 29744584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-patch and multi-group epidemic models: a new framework.
    Bichara D; Iggidr A
    J Math Biol; 2018 Jul; 77(1):107-134. PubMed ID: 29149377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The basic reproduction number [Formula: see text] in time-heterogeneous environments.
    Inaba H
    J Math Biol; 2019 Jul; 79(2):731-764. PubMed ID: 31087145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A climate-based malaria model with the use of bed nets.
    Wang X; Zhao XQ
    J Math Biol; 2018 Jul; 77(1):1-25. PubMed ID: 28965238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical analysis of a measles transmission dynamics model in Bangladesh with double dose vaccination.
    Kuddus MA; Mohiuddin M; Rahman A
    Sci Rep; 2021 Aug; 11(1):16571. PubMed ID: 34400667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SIS and SIR Epidemic Models Under Virtual Dispersal.
    Bichara D; Kang Y; Castillo-Chavez C; Horan R; Perrings C
    Bull Math Biol; 2015 Nov; 77(11):2004-34. PubMed ID: 26489419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Mathematical Model of Fluid Transport in an Accurate Reconstruction of Parotid Acinar Cells.
    Vera-Sigüenza E; Pages N; Rugis J; Yule DI; Sneyd J
    Bull Math Biol; 2019 Mar; 81(3):699-721. PubMed ID: 30484039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disease Extinction Versus Persistence in Discrete-Time Epidemic Models.
    van den Driessche P; Yakubu AA
    Bull Math Biol; 2019 Nov; 81(11):4412-4446. PubMed ID: 29651670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A periodic disease transmission model with asymptomatic carriage and latency periods.
    Al-Darabsah I; Yuan Y
    J Math Biol; 2018 Aug; 77(2):343-376. PubMed ID: 29274002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bifurcation analysis and global dynamics of a mathematical model of antibiotic resistance in hospitals.
    Cen X; Feng Z; Zheng Y; Zhao Y
    J Math Biol; 2017 Dec; 75(6-7):1463-1485. PubMed ID: 28396937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.