These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
346 related articles for article (PubMed ID: 29445868)
1. Induction of systemic resistance in tomato against Botrytis cinerea by N-decanoyl-homoserine lactone via jasmonic acid signaling. Hu Z; Shao S; Zheng C; Sun Z; Shi J; Yu J; Qi Z; Shi K Planta; 2018 May; 247(5):1217-1227. PubMed ID: 29445868 [TBL] [Abstract][Full Text] [Related]
2. Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways. Zhang Y; Li D; Zhang H; Hong Y; Huang L; Liu S; Li X; Ouyang Z; Song F BMC Plant Biol; 2015 Oct; 15():252. PubMed ID: 26490733 [TBL] [Abstract][Full Text] [Related]
3. Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in tomato. El Oirdi M; El Rahman TA; Rigano L; El Hadrami A; Rodriguez MC; Daayf F; Vojnov A; Bouarab K Plant Cell; 2011 Jun; 23(6):2405-21. PubMed ID: 21665999 [TBL] [Abstract][Full Text] [Related]
4. Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (Solanum lycopersicum) plants against Botrytis cinerea. Angulo C; de la O Leyva M; Finiti I; López-Cruz J; Fernández-Crespo E; García-Agustín P; González-Bosch C J Plant Physiol; 2015 Mar; 175():163-73. PubMed ID: 25543862 [TBL] [Abstract][Full Text] [Related]
5. The epiphytic fungus Pseudozyma aphidis induces jasmonic acid- and salicylic acid/nonexpressor of PR1-independent local and systemic resistance. Buxdorf K; Rahat I; Gafni A; Levy M Plant Physiol; 2013 Apr; 161(4):2014-22. PubMed ID: 23388119 [TBL] [Abstract][Full Text] [Related]
6. Silencing of the tomato phosphatidylinositol-phospholipase C2 (SlPLC2) reduces plant susceptibility to Botrytis cinerea. Gonorazky G; Guzzo MC; Abd-El-Haliem AM; Joosten MH; Laxalt AM Mol Plant Pathol; 2016 Dec; 17(9):1354-1363. PubMed ID: 26868615 [TBL] [Abstract][Full Text] [Related]
7. Knockout of SlMAPK3 Reduced Disease Resistance to Botrytis cinerea in Tomato Plants. Zhang S; Wang L; Zhao R; Yu W; Li R; Li Y; Sheng J; Shen L J Agric Food Chem; 2018 Aug; 66(34):8949-8956. PubMed ID: 30092129 [TBL] [Abstract][Full Text] [Related]
8. Necrotrophic pathogens use the salicylic acid signaling pathway to promote disease development in tomato. Rahman TA; Oirdi ME; Gonzalez-Lamothe R; Bouarab K Mol Plant Microbe Interact; 2012 Dec; 25(12):1584-93. PubMed ID: 22950753 [TBL] [Abstract][Full Text] [Related]
9. Alkamides activate jasmonic acid biosynthesis and signaling pathways and confer resistance to Botrytis cinerea in Arabidopsis thaliana. Méndez-Bravo A; Calderón-Vázquez C; Ibarra-Laclette E; Raya-González J; Ramírez-Chávez E; Molina-Torres J; Guevara-García AA; López-Bucio J; Herrera-Estrella L PLoS One; 2011; 6(11):e27251. PubMed ID: 22076141 [TBL] [Abstract][Full Text] [Related]
10. Antagonism between phytohormone signalling underlies the variation in disease susceptibility of tomato plants under elevated CO2. Zhang S; Li X; Sun Z; Shao S; Hu L; Ye M; Zhou Y; Xia X; Yu J; Shi K J Exp Bot; 2015 Apr; 66(7):1951-63. PubMed ID: 25657213 [TBL] [Abstract][Full Text] [Related]
11. Overexpression of SlMYB75 enhances resistance to Botrytis cinerea and prolongs fruit storage life in tomato. Liu M; Zhang Z; Xu Z; Wang L; Chen C; Ren Z Plant Cell Rep; 2021 Jan; 40(1):43-58. PubMed ID: 32990799 [TBL] [Abstract][Full Text] [Related]
12. SlBBX20 attenuates JA signalling and regulates resistance to Botrytis cinerea by inhibiting SlMED25 in tomato. Luo D; Sun W; Cai J; Hu G; Zhang D; Zhang X; Larkin RM; Zhang J; Yang C; Ye Z; Wang T Plant Biotechnol J; 2023 Apr; 21(4):792-805. PubMed ID: 36582069 [TBL] [Abstract][Full Text] [Related]
13. Comprehensive analysis of multiprotein bridging factor 1 family genes and SlMBF1c negatively regulate the resistance to Botrytis cinerea in tomato. Zhang X; Xu Z; Chen L; Ren Z BMC Plant Biol; 2019 Oct; 19(1):437. PubMed ID: 31638895 [TBL] [Abstract][Full Text] [Related]
14. Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores. Yan L; Zhai Q; Wei J; Li S; Wang B; Huang T; Du M; Sun J; Kang L; Li CB; Li C PLoS Genet; 2013; 9(12):e1003964. PubMed ID: 24348260 [TBL] [Abstract][Full Text] [Related]
16. The sesquiterpene botrydial produced by Botrytis cinerea induces the hypersensitive response on plant tissues and its action is modulated by salicylic acid and jasmonic acid signaling. Rossi FR; Gárriz A; Marina M; Romero FM; Gonzalez ME; Collado IG; Pieckenstain FL Mol Plant Microbe Interact; 2011 Aug; 24(8):888-96. PubMed ID: 21751851 [TBL] [Abstract][Full Text] [Related]
17. The tomato Mediator subunit MED8 positively regulates plant response to Botrytis cinerea. Zhang L; Song Y; Liu K; Gong F J Plant Physiol; 2021 Nov; 266():153533. PubMed ID: 34601339 [TBL] [Abstract][Full Text] [Related]
18. The glutaredoxin ATGRXS13 is required to facilitate Botrytis cinerea infection of Arabidopsis thaliana plants. La Camera S; L'haridon F; Astier J; Zander M; Abou-Mansour E; Page G; Thurow C; Wendehenne D; Gatz C; Métraux JP; Lamotte O Plant J; 2011 Nov; 68(3):507-19. PubMed ID: 21756272 [TBL] [Abstract][Full Text] [Related]
19. Priming for JA-dependent defenses using hexanoic acid is an effective mechanism to protect Arabidopsis against B. cinerea. Kravchuk Z; Vicedo B; Flors V; Camañes G; González-Bosch C; García-Agustín P J Plant Physiol; 2011 Mar; 168(4):359-66. PubMed ID: 20950893 [TBL] [Abstract][Full Text] [Related]
20. Systemic jasmonic acid modulation in mycorrhizal tomato plants and its role in induced resistance against Alternaria alternata. Nair A; Kolet SP; Thulasiram HV; Bhargava S Plant Biol (Stuttg); 2015 May; 17(3):625-31. PubMed ID: 25327848 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]