BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 29446085)

  • 121. RNA-based pharmacotherapy for tumors: From bench to clinic and back.
    Liang X; Li D; Leng S; Zhu X
    Biomed Pharmacother; 2020 May; 125():109997. PubMed ID: 32062550
    [TBL] [Abstract][Full Text] [Related]  

  • 122. m
    Tang B; Yang Y; Kang M; Wang Y; Wang Y; Bi Y; He S; Shimamoto F
    Mol Cancer; 2020 Jan; 19(1):3. PubMed ID: 31906946
    [TBL] [Abstract][Full Text] [Related]  

  • 123. Lysine Methylation Regulators Moonlighting outside the Epigenome.
    Cornett EM; Ferry L; Defossez PA; Rothbart SB
    Mol Cell; 2019 Sep; 75(6):1092-1101. PubMed ID: 31539507
    [TBL] [Abstract][Full Text] [Related]  

  • 124. Co-delivery of VEGF siRNA and Etoposide for Enhanced Anti-angiogenesis and Anti-proliferation Effect
    Li F; Wang Y; Chen WL; Wang DD; Zhou YJ; You BG; Liu Y; Qu CX; Yang SD; Chen MT; Zhang XN
    Theranostics; 2019; 9(20):5886-5898. PubMed ID: 31534526
    [TBL] [Abstract][Full Text] [Related]  

  • 125. Upregulated METTL3 promotes metastasis of colorectal Cancer via miR-1246/SPRED2/MAPK signaling pathway.
    Peng W; Li J; Chen R; Gu Q; Yang P; Qian W; Ji D; Wang Q; Zhang Z; Tang J; Sun Y
    J Exp Clin Cancer Res; 2019 Sep; 38(1):393. PubMed ID: 31492150
    [TBL] [Abstract][Full Text] [Related]  

  • 126. METTL3 facilitates tumor progression via an m
    Li T; Hu PS; Zuo Z; Lin JF; Li X; Wu QN; Chen ZH; Zeng ZL; Wang F; Zheng J; Chen D; Li B; Kang TB; Xie D; Lin D; Ju HQ; Xu RH
    Mol Cancer; 2019 Jun; 18(1):112. PubMed ID: 31230592
    [TBL] [Abstract][Full Text] [Related]  

  • 127. MiR-873-5p suppresses cell proliferation and epithelial-mesenchymal transition via directly targeting Jumonji domain-containing protein 8 through the NF-κB pathway in colorectal cancer.
    Wang L; Jiang F; Ma F; Zhang B
    J Cell Commun Signal; 2019 Dec; 13(4):549-560. PubMed ID: 31152315
    [TBL] [Abstract][Full Text] [Related]  

  • 128. Restoration of tumour-growth suppression in vivo via systemic nanoparticle-mediated delivery of PTEN mRNA.
    Islam MA; Xu Y; Tao W; Ubellacker JM; Lim M; Aum D; Lee GY; Zhou K; Zope H; Yu M; Cao W; Oswald JT; Dinarvand M; Mahmoudi M; Langer R; Kantoff PW; Farokhzad OC; Zetter BR; Shi J
    Nat Biomed Eng; 2018 Nov; 2(11):850-864. PubMed ID: 31015614
    [TBL] [Abstract][Full Text] [Related]  

  • 129. Biomedical applications of mRNA nanomedicine.
    Xiong Q; Lee GY; Ding J; Li W; Shi J
    Nano Res; 2018 Oct; 11(10):5281-5309. PubMed ID: 31007865
    [TBL] [Abstract][Full Text] [Related]  

  • 130. Effect of Cationic Lipid Type in Folate-PEG-Modified Cationic Liposomes on Folate Receptor-Mediated siRNA Transfection in Tumor Cells.
    Hattori Y; Shimizu S; Ozaki KI; Onishi H
    Pharmaceutics; 2019 Apr; 11(4):. PubMed ID: 30991703
    [TBL] [Abstract][Full Text] [Related]  

  • 131. Highly sensitive and specific cytosensing of HT 29 colorectal cancer cells using folic acid functionalized-KCC-1 nanoparticles.
    Soleymani J; Hasanzadeh M; Somi MH; Shadjou N; Jouyban A
    Biosens Bioelectron; 2019 May; 132():122-131. PubMed ID: 30870638
    [TBL] [Abstract][Full Text] [Related]  

  • 132. Oxygen sensor FIH inhibits HACE1-dependent ubiquitination of Rac1 to enhance metastatic potential in breast cancer cells.
    Kim I; Shin SH; Lee JE; Park JW
    Oncogene; 2019 May; 38(19):3651-3666. PubMed ID: 30659265
    [TBL] [Abstract][Full Text] [Related]  

  • 133. Correlation between high expression levels of jumonji domain-containing 4 and short survival in cases of colon adenocarcinoma.
    Ho YJ; Shih CP; Yeh KT; Shi B; Gong Z; Lin YM; Lu JW
    Biochem Biophys Res Commun; 2018 Sep; 503(3):1442-1449. PubMed ID: 30029884
    [TBL] [Abstract][Full Text] [Related]  

  • 134. Recognition of RNA N
    Huang H; Weng H; Sun W; Qin X; Shi H; Wu H; Zhao BS; Mesquita A; Liu C; Yuan CL; Hu YC; Hüttelmaier S; Skibbe JR; Su R; Deng X; Dong L; Sun M; Li C; Nachtergaele S; Wang Y; Hu C; Ferchen K; Greis KD; Jiang X; Wei M; Qu L; Guan JL; He C; Yang J; Chen J
    Nat Cell Biol; 2018 Mar; 20(3):285-295. PubMed ID: 29476152
    [TBL] [Abstract][Full Text] [Related]  

  • 135. SNP-Target Genes Interaction Perturbing the Cancer Risk in the Post-GWAS.
    Yang W; Zhang T; Song X; Dong G; Xu L; Jiang F
    Cancers (Basel); 2022 Nov; 14(22):. PubMed ID: 36428729
    [TBL] [Abstract][Full Text] [Related]  

  • 136. Astragalus mongholicus Bunge-Curcuma aromatica Salisb. suppresses growth and metastasis of colorectal cancer cells by inhibiting M2 macrophage polarization via a Sp1/ZFAS1/miR-153-3p/CCR5 regulatory axis.
    Gu J; Sun R; Tang D; Liu F; Chang X; Wang Q
    Cell Biol Toxicol; 2022 Aug; 38(4):679-697. PubMed ID: 35072892
    [TBL] [Abstract][Full Text] [Related]  

  • 137. A costimulatory molecule-related signature in regard to evaluation of prognosis and immune features for clear cell renal cell carcinoma.
    Hua X; Ge S; Zhang J; Xiao H; Tai S; Yang C; Zhang L; Liang C
    Cell Death Discov; 2021 Sep; 7(1):252. PubMed ID: 34537809
    [TBL] [Abstract][Full Text] [Related]  

  • 138. MAGI2-AS3 rs7783388 polymorphism contributes to colorectal cancer risk through altering the binding affinity of the transcription factor GR to the MAGI2-AS3 promoter.
    Yang X; Wu S; Li X; Yin Y; Chen R
    J Clin Lab Anal; 2020 Oct; 34(10):e23431. PubMed ID: 32533587
    [TBL] [Abstract][Full Text] [Related]  

  • 139. CircPTK2 (hsa_circ_0005273) as a novel therapeutic target for metastatic colorectal cancer.
    Yang H; Li X; Meng Q; Sun H; Wu S; Hu W; Liu G; Li X; Yang Y; Chen R
    Mol Cancer; 2020 Jan; 19(1):13. PubMed ID: 31973707
    [TBL] [Abstract][Full Text] [Related]  

  • 140. Association between nucleotide excision repair gene polymorphism and colorectal cancer risk.
    Zhang Y; Wu S; Zhou X; Huang F; Chen R; Wang Y; Wu J
    J Clin Lab Anal; 2019 Oct; 33(8):e22956. PubMed ID: 31568607
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.