These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

455 related articles for article (PubMed ID: 29446144)

  • 1. Animal models of multiple sclerosis: Focus on experimental autoimmune encephalomyelitis.
    Bjelobaba I; Begovic-Kupresanin V; Pekovic S; Lavrnja I
    J Neurosci Res; 2018 Jun; 96(6):1021-1042. PubMed ID: 29446144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Animal models of Multiple Sclerosis.
    Procaccini C; De Rosa V; Pucino V; Formisano L; Matarese G
    Eur J Pharmacol; 2015 Jul; 759():182-91. PubMed ID: 25823807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-Dependent Progression of Demyelination and Axonal Pathology in MP4-Induced Experimental Autoimmune Encephalomyelitis.
    Prinz J; Karacivi A; Stormanns ER; Recks MS; Kuerten S
    PLoS One; 2015; 10(12):e0144847. PubMed ID: 26658811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mast cells in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis.
    Costanza M; Colombo MP; Pedotti R
    Int J Mol Sci; 2012 Nov; 13(11):15107-25. PubMed ID: 23203114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Animal models of multiple sclerosis: From rodents to zebrafish.
    Burrows DJ; McGown A; Jain SA; De Felice M; Ramesh TM; Sharrack B; Majid A
    Mult Scler; 2019 Mar; 25(3):306-324. PubMed ID: 30319015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delineating the Role of Toll-Like Receptors in the Neuro-inflammation Model EAE.
    Fallarino F; Gargaro M; Mondanell G; Downer EJ; Hossain MJ; Gran B
    Methods Mol Biol; 2016; 1390():383-411. PubMed ID: 26803641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuropathological Techniques to Investigate CNS Pathology in Experimental Autoimmune Encephalomyelitis (EAE).
    Steinbach K; Merkler D
    Methods Mol Biol; 2016; 1304():189-209. PubMed ID: 25146304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro and in vivo models of multiple sclerosis.
    van der Star BJ; Vogel DY; Kipp M; Puentes F; Baker D; Amor S
    CNS Neurol Disord Drug Targets; 2012 Aug; 11(5):570-88. PubMed ID: 22583443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An overall view of the most common experimental models for multiple sclerosis.
    Dedoni S; Scherma M; Camoglio C; Siddi C; Dazzi L; Puliga R; Frau J; Cocco E; Fadda P
    Neurobiol Dis; 2023 Aug; 184():106230. PubMed ID: 37453561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mouse models of multiple sclerosis: lost in translation?
    Baker D; Amor S
    Curr Pharm Des; 2015; 21(18):2440-52. PubMed ID: 25777759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclophilin D inactivation protects axons in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis.
    Forte M; Gold BG; Marracci G; Chaudhary P; Basso E; Johnsen D; Yu X; Fowlkes J; Rahder M; Stem K; Bernardi P; Bourdette D
    Proc Natl Acad Sci U S A; 2007 May; 104(18):7558-63. PubMed ID: 17463082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two models for multiple sclerosis: experimental allergic encephalomyelitis and Theiler's murine encephalomyelitis virus.
    Tsunoda I; Fujinami RS
    J Neuropathol Exp Neurol; 1996 Jun; 55(6):673-86. PubMed ID: 8642393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS).
    Constantinescu CS; Farooqi N; O'Brien K; Gran B
    Br J Pharmacol; 2011 Oct; 164(4):1079-106. PubMed ID: 21371012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing the CNS morphology and immunobiology of different EAE models in C57BL/6 mice - a step towards understanding the complexity of multiple sclerosis.
    Kuerten S; Angelov DN
    Ann Anat; 2008; 190(1):1-15. PubMed ID: 18342137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age dependence of clinical and pathological manifestations of autoimmune demyelination. Implications for multiple sclerosis.
    Smith ME; Eller NL; McFarland HF; Racke MK; Raine CS
    Am J Pathol; 1999 Oct; 155(4):1147-61. PubMed ID: 10514398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Creation of a model for multiple sclerosis in Callithrix jacchus marmosets.
    Genain CP; Hauser SL
    J Mol Med (Berl); 1997 Mar; 75(3):187-97. PubMed ID: 9106075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opioid growth factor and low-dose naltrexone impair central nervous system infiltration by CD4 + T lymphocytes in established experimental autoimmune encephalomyelitis, a model of multiple sclerosis.
    Hammer LA; Waldner H; Zagon IS; McLaughlin PJ
    Exp Biol Med (Maywood); 2016 Jan; 241(1):71-8. PubMed ID: 26202376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absence of system x
    Merckx E; Albertini G; Paterka M; Jensen C; Albrecht P; Dietrich M; Van Liefferinge J; Bentea E; Verbruggen L; Demuyser T; Deneyer L; Lewerenz J; van Loo G; De Keyser J; Sato H; Maher P; Methner A; Massie A
    J Neuroinflammation; 2017 Jan; 14(1):9. PubMed ID: 28086920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effectors of demyelination and remyelination in the CNS: implications for multiple sclerosis.
    Rodriguez M
    Brain Pathol; 2007 Apr; 17(2):219-29. PubMed ID: 17388953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Animal model of multiple sclerosis: Experimental autoimmune encephalomyelitis.
    Muñoz-Jurado A; Escribano BM; Túnez I
    Methods Cell Biol; 2024; 188():35-60. PubMed ID: 38880527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.