BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 29446221)

  • 1. Stereodivergent Evolution of Artificial Enzymes for the Michael Reaction.
    Garrabou X; Macdonald DS; Wicky BIM; Hilvert D
    Angew Chem Int Ed Engl; 2018 May; 57(19):5288-5291. PubMed ID: 29446221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Promiscuous De Novo Retro-Aldolase Catalyzes Asymmetric Michael Additions via Schiff Base Intermediates.
    Garrabou X; Beck T; Hilvert D
    Angew Chem Int Ed Engl; 2015 May; 54(19):5609-12. PubMed ID: 25777153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breaking the Dogma of Aldolase Specificity: Simple Aliphatic Ketones and Aldehydes are Nucleophiles for Fructose-6-phosphate Aldolase.
    Roldán R; Sanchez-Moreno I; Scheidt T; Hélaine V; Lemaire M; Parella T; Clapés P; Fessner WD; Guérard-Hélaine C
    Chemistry; 2017 Apr; 23(21):5005-5009. PubMed ID: 28266745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complete Switch of Reaction Specificity of an Aldolase by Directed Evolution In Vitro: Synthesis of Generic Aliphatic Aldol Products.
    Junker S; Roldan R; Joosten HJ; Clapés P; Fessner WD
    Angew Chem Int Ed Engl; 2018 Aug; 57(32):10153-10157. PubMed ID: 29882622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantiocomplementary Synthesis of γ-Nitroketones Using Designed and Evolved Carboligases.
    Garrabou X; Verez R; Hilvert D
    J Am Chem Soc; 2017 Jan; 139(1):103-106. PubMed ID: 27992715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast Knoevenagel Condensations Catalyzed by an Artificial Schiff-Base-Forming Enzyme.
    Garrabou X; Wicky BI; Hilvert D
    J Am Chem Soc; 2016 Jun; 138(22):6972-4. PubMed ID: 27196438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemoselective Henry Condensations Catalyzed by Artificial Carboligases.
    Garrabou X; Macdonald DS; Hilvert D
    Chemistry; 2017 May; 23(25):6001-6003. PubMed ID: 28070900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering stereocontrol into an aldolase-catalysed reaction.
    Lamble HJ; Danson MJ; Hough DW; Bull SD
    Chem Commun (Camb); 2005 Jan; (1):124-6. PubMed ID: 15614394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of aldolase antibodies in vitro: correlation of catalytic activity and reaction-based selection.
    Tanaka F; Fuller R; Shim H; Lerner RA; Barbas CF
    J Mol Biol; 2004 Jan; 335(4):1007-18. PubMed ID: 14698295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small peptides as modular catalysts for the direct asymmetric aldol reaction: ancient peptides with aldolase enzyme activity.
    Zou W; Ibrahem I; Dziedzic P; Sundén H; Córdova A
    Chem Commun (Camb); 2005 Oct; (39):4946-8. PubMed ID: 16205809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emergence of a catalytic tetrad during evolution of a highly active artificial aldolase.
    Obexer R; Godina A; Garrabou X; Mittl PR; Baker D; Griffiths AD; Hilvert D
    Nat Chem; 2017 Jan; 9(1):50-56. PubMed ID: 27995916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mimic of type II aldolases chemistry: asymmetric synthesis of beta-hydroxy ketones by direct aldol reaction.
    Lu Z; Mei H; Han J; Pan Y
    Chem Biol Drug Des; 2010 Aug; 76(2):181-6. PubMed ID: 20572810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture.
    Savile CK; Janey JM; Mundorff EC; Moore JC; Tam S; Jarvis WR; Colbeck JC; Krebber A; Fleitz FJ; Brands J; Devine PN; Huisman GW; Hughes GJ
    Science; 2010 Jul; 329(5989):305-9. PubMed ID: 20558668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aldolase-catalysed stereoselective synthesis of fluorinated small molecules.
    Windle CL; Berry A; Nelson A
    Curr Opin Chem Biol; 2017 Apr; 37():33-38. PubMed ID: 28113093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and Evolution of an Enzyme for the Asymmetric Michael Addition of Cyclic Ketones to Nitroolefins by Enamine Catalysis.
    Zhu Z; Hu Q; Fu Y; Tong Y; Zhou Z
    Angew Chem Int Ed Engl; 2024 May; ():e202404312. PubMed ID: 38783596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemoenzymatic Platform for Synthesis of Chiral Organofluorines Based on Type II Aldolases.
    Fang J; Hait D; Head-Gordon M; Chang MCY
    Angew Chem Int Ed Engl; 2019 Aug; 58(34):11841-11845. PubMed ID: 31240790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo plug-and-play: a modular multi-enzyme single-cell catalyst for the asymmetric amination of ketoacids and ketones.
    Farnberger JE; Lorenz E; Richter N; Wendisch VF; Kroutil W
    Microb Cell Fact; 2017 Jul; 16(1):132. PubMed ID: 28754115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New Stereoselective Biocatalysts for Carboligation and Retro-Aldol Cleavage Reactions Derived from d-Fructose 6-Phosphate Aldolase.
    Ma H; Engel S; Enugala TR; Al-Smadi D; Gautier C; Widersten M
    Biochemistry; 2018 Oct; 57(40):5877-5885. PubMed ID: 30204427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inducing high activity of a thermophilic enzyme at ambient temperatures by directed evolution.
    Li G; Maria-Solano MA; Romero-Rivera A; Osuna S; Reetz MT
    Chem Commun (Camb); 2017 Aug; 53(68):9454-9457. PubMed ID: 28795696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unlocking New Reactivities in Enzymes by Iminium Catalysis.
    Xu G; Poelarends GJ
    Angew Chem Int Ed Engl; 2022 Jul; 61(30):e202203613. PubMed ID: 35524737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.