These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 29446497)

  • 1. Specific Interaction Sites Determine Differential Adsorption of Protein Structural Isomers on Nanoparticle Surfaces.
    Bortot A; Zanzoni S; D'Onofrio M; Assfalg M
    Chemistry; 2018 Apr; 24(22):5911-5919. PubMed ID: 29446497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Paramagnetic Nanoparticles Leave Their Mark on Nuclear Spins of Transiently Adsorbed Proteins.
    Zanzoni S; Pedroni M; D'Onofrio M; Speghini A; Assfalg M
    J Am Chem Soc; 2016 Jan; 138(1):72-5. PubMed ID: 26683352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyhydroxylated [60]fullerene binds specifically to functional recognition sites on a monomeric and a dimeric ubiquitin.
    Zanzoni S; Ceccon A; Assfalg M; Singh RK; Fushman D; D'Onofrio M
    Nanoscale; 2015 Apr; 7(16):7197-205. PubMed ID: 25811293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The study of transient protein-nanoparticle interactions by solution NMR spectroscopy.
    Assfalg M; Ragona L; Pagano K; D'Onofrio M; Zanzoni S; Tomaselli S; Molinari H
    Biochim Biophys Acta Proteins Proteom; 2016 Jan; 1864(1):102-14. PubMed ID: 25936778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying and studying ubiquitin receptors by NMR.
    Chen X; Walters KJ
    Methods Mol Biol; 2012; 832():279-303. PubMed ID: 22350893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping the interactions between Lys48 and Lys63-linked di-ubiquitins and a ubiquitin-interacting motif of S5a.
    Haririnia A; D'Onofrio M; Fushman D
    J Mol Biol; 2007 May; 368(3):753-66. PubMed ID: 17368669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oriented protein adsorption to gold nanoparticles through a genetically encodable binding motif.
    Reed AM; Metallo SJ
    Langmuir; 2010 Dec; 26(24):18945-50. PubMed ID: 21114269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetrical interactions between nanoparticles and proteins arising from deformation upon adsorption to surfaces.
    Maniar M; Kohn J; Murthy NS
    Biophys Chem; 2023 Nov; 302():107098. PubMed ID: 37677920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of a globular protein adsorbed to liposomal nanoparticles.
    Ceccon A; Lelli M; D'Onofrio M; Molinari H; Assfalg M
    J Am Chem Soc; 2014 Sep; 136(38):13158-61. PubMed ID: 25198387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lys63-linked ubiquitin chain adopts multiple conformational states for specific target recognition.
    Liu Z; Gong Z; Jiang WX; Yang J; Zhu WK; Guo DC; Zhang WP; Liu ML; Tang C
    Elife; 2015 Jun; 4():. PubMed ID: 26090905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated approach to the study of the interaction between proteins and nanoparticles.
    Turci F; Ghibaudi E; Colonna M; Boscolo B; Fenoglio I; Fubini B
    Langmuir; 2010 Jun; 26(11):8336-46. PubMed ID: 20205402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the Polymer Architecture on the Structural and Biophysical Properties of PEG-PLA Nanoparticles.
    Rabanel JM; Faivre J; Tehrani SF; Lalloz A; Hildgen P; Banquy X
    ACS Appl Mater Interfaces; 2015 May; 7(19):10374-85. PubMed ID: 25909493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of superparamagnetic iron oxide nanoparticles on silica and calcium carbonate sand.
    Park YC; Paulsen J; Nap RJ; Whitaker RD; Mathiyazhagan V; Song YQ; Hürlimann M; Szleifer I; Wong JY
    Langmuir; 2014 Jan; 30(3):784-92. PubMed ID: 24393031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation into the molecular and thermodynamic basis of protein interactions in multimodal chromatography using functionalized nanoparticles.
    Srinivasan K; Parimal S; Lopez MM; McCallum SA; Cramer SM
    Langmuir; 2014 Nov; 30(44):13205-16. PubMed ID: 25310519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein--nanoparticle interaction: identification of the ubiquitin--gold nanoparticle interaction site.
    Calzolai L; Franchini F; Gilliland D; Rossi F
    Nano Lett; 2010 Aug; 10(8):3101-5. PubMed ID: 20698623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of surface compositional and structural heterogeneity on nanoparticle-protein interactions: different protein configurations.
    Huang R; Carney RP; Ikuma K; Stellacci F; Lau BL
    ACS Nano; 2014 Jun; 8(6):5402-12. PubMed ID: 24882660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inorganic nanoparticle biomolecular corona: formation, evolution and biological impact.
    Casals E; Puntes VF
    Nanomedicine (Lond); 2012 Dec; 7(12):1917-30. PubMed ID: 23249335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface Functionalization of Nanoparticles with Polyethylene Glycol: Effects on Protein Adsorption and Cellular Uptake.
    Pelaz B; del Pino P; Maffre P; Hartmann R; Gallego M; Rivera-Fernández S; de la Fuente JM; Nienhaus GU; Parak WJ
    ACS Nano; 2015 Jul; 9(7):6996-7008. PubMed ID: 26079146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient protein-protein interactions visualized by solution NMR.
    Liu Z; Gong Z; Dong X; Tang C
    Biochim Biophys Acta; 2016 Jan; 1864(1):115-22. PubMed ID: 25896389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein-nanoparticle interactions: the effects of surface compositional and structural heterogeneity are scale dependent.
    Huang R; Carney RP; Stellacci F; Lau BL
    Nanoscale; 2013 Aug; 5(15):6928-35. PubMed ID: 23787874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.