These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 29446753)

  • 1. Correction: Measurements and models of electric fields in the
    Huang Y; Liu AA; Lafon B; Friedman D; Dayan M; Wang X; Bikson M; Doyle WK; Devinsky O; Parra LC
    Elife; 2018 Feb; 7():. PubMed ID: 29446753
    [No Abstract]   [Full Text] [Related]  

  • 2. Measurements and models of electric fields in the
    Huang Y; Liu AA; Lafon B; Friedman D; Dayan M; Wang X; Bikson M; Doyle WK; Devinsky O; Parra LC
    Elife; 2017 Feb; 6():. PubMed ID: 28169833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric Fields Induced in the Brain by Transcranial Electric Stimulation: A Review of In Vivo Recordings.
    Guidetti M; Arlotti M; Bocci T; Bianchi AM; Parazzini M; Ferrucci R; Priori A
    Biomedicines; 2022 Sep; 10(10):. PubMed ID: 36289595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endogenous and exogenous electric fields as modifiers of brain activity: rational design of noninvasive brain stimulation with transcranial alternating current stimulation.
    Fröhlich F
    Dialogues Clin Neurosci; 2014 Mar; 16(1):93-102. PubMed ID: 24733974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing the electric fields of transcranial electric and magnetic perturbation.
    Sheltraw DJ; Inglis B; Labruna L; Ivry R
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33662947
    [No Abstract]   [Full Text] [Related]  

  • 6. Limitations of ex vivo measurements for in vivo neuroscience.
    Opitz A; Falchier A; Linn GS; Milham MP; Schroeder CE
    Proc Natl Acad Sci U S A; 2017 May; 114(20):5243-5246. PubMed ID: 28461475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative modeling of transcranial magnetic and electric stimulation in mouse, monkey, and human.
    Alekseichuk I; Mantell K; Shirinpour S; Opitz A
    Neuroimage; 2019 Jul; 194():136-148. PubMed ID: 30910725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological effects of low-magnitude electric fields on brain activity: advances from
    Modolo J; Denoyer Y; Wendling F; Benquet P
    Curr Opin Biomed Eng; 2018 Dec; 8():38-44. PubMed ID: 31106284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time estimation of electric fields induced by transcranial magnetic stimulation with deep neural networks.
    Yokota T; Maki T; Nagata T; Murakami T; Ugawa Y; Laakso I; Hirata A; Hontani H
    Brain Stimul; 2019; 12(6):1500-1507. PubMed ID: 31262697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcranial Electrical Stimulation generates electric fields in deep human brain structures.
    Louviot S; Tyvaert L; Maillard LG; Colnat-Coulbois S; Dmochowski J; Koessler L
    Brain Stimul; 2022; 15(1):1-12. PubMed ID: 34742994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcranial electric stimulation seen from within the brain.
    Peterchev AV
    Elife; 2017 Mar; 6():. PubMed ID: 28350293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of meninges on the electric fields in TES and TMS. Numerical modeling with adaptive mesh refinement.
    Weise K; Wartman WA; Knösche TR; Nummenmaa AR; Makarov SN
    Brain Stimul; 2022; 15(3):654-663. PubMed ID: 35447379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence of Neuroplastic Changes after Transcranial Magnetic, Electric, and Deep Brain Stimulation.
    Kricheldorff J; Göke K; Kiebs M; Kasten FH; Herrmann CS; Witt K; Hurlemann R
    Brain Sci; 2022 Jul; 12(7):. PubMed ID: 35884734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of deep brain structure modeling on transcranial direct current stimulation-induced electric fields: An in-silico study.
    Song CB; Lim C; Lee J; Kim D; Seo H
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interindividual variability of electric fields during transcranial temporal interference stimulation (tTIS).
    von Conta J; Kasten FH; Ćurčić-Blake B; Aleman A; Thielscher A; Herrmann CS
    Sci Rep; 2021 Oct; 11(1):20357. PubMed ID: 34645895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of effectiveness between cork-screw and peg-screw electrodes for transcranial motor evoked potential monitoring using the finite element method.
    Tomio R; Akiyama T; Ohira T; Yoshida K
    Surg Neurol Int; 2016; 7(Suppl 32):S791-S796. PubMed ID: 27920938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling the differential effects of age on transcranial magnetic stimulation induced electric fields.
    Alawi M; Lee PF; Deng ZD; Goh YK; Croarkin PE
    J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36240726
    [No Abstract]   [Full Text] [Related]  

  • 18. Inter-individual and age-dependent variability in simulated electric fields induced by conventional transcranial electrical stimulation.
    Antonenko D; Grittner U; Saturnino G; Nierhaus T; Thielscher A; Flöel A
    Neuroimage; 2021 Jan; 224():117413. PubMed ID: 33011418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence of transcranial direct current stimulation-generated electric fields at subthalamic level in human brain in vivo.
    Chhatbar PY; Kautz SA; Takacs I; Rowland NC; Revuelta GJ; George MS; Bikson M; Feng W
    Brain Stimul; 2018; 11(4):727-733. PubMed ID: 29576498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endogenous cortical oscillations constrain neuromodulation by weak electric fields.
    Schmidt SL; Iyengar AK; Foulser AA; Boyle MR; Fröhlich F
    Brain Stimul; 2014; 7(6):878-89. PubMed ID: 25129402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.