BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

498 related articles for article (PubMed ID: 29446800)

  • 61. Chimeric adaptor proteins translocate diverse type VI secretion system effectors in Vibrio cholerae.
    Unterweger D; Kostiuk B; Ötjengerdes R; Wilton A; Diaz-Satizabal L; Pukatzki S
    EMBO J; 2015 Aug; 34(16):2198-210. PubMed ID: 26194724
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Engineered Type Six Secretion Systems Deliver Active Exogenous Effectors and Cre Recombinase.
    Hersch SJ; Lam L; Dong TG
    mBio; 2021 Aug; 12(4):e0111521. PubMed ID: 34281388
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Dual role colonization factors connecting Vibrio cholerae's lifestyles in human and aquatic environments open new perspectives for combating infectious diseases.
    Vezzulli L; Guzmán CA; Colwell RR; Pruzzo C
    Curr Opin Biotechnol; 2008 Jun; 19(3):254-9. PubMed ID: 18501582
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Seasonal epidemics of cholera inversely correlate with the prevalence of environmental cholera phages.
    Faruque SM; Naser IB; Islam MJ; Faruque AS; Ghosh AN; Nair GB; Sack DA; Mekalanos JJ
    Proc Natl Acad Sci U S A; 2005 Feb; 102(5):1702-7. PubMed ID: 15653771
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Glucose confers protection to Escherichia coli against contact killing by Vibrio cholerae.
    Crisan CV; Nichols HL; Wiesenfeld S; Steinbach G; Yunker PJ; Hammer BK
    Sci Rep; 2021 Feb; 11(1):2935. PubMed ID: 33536444
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Pathoadaptive conditional regulation of the type VI secretion system in Vibrio cholerae O1 strains.
    Ishikawa T; Sabharwal D; Bröms J; Milton DL; Sjöstedt A; Uhlin BE; Wai SN
    Infect Immun; 2012 Feb; 80(2):575-84. PubMed ID: 22083711
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Single nucleotide polymorphism determines constitutive versus inducible type VI secretion in Vibrio cholerae.
    Drebes Dörr NC; Proutière A; Jaskólska M; Stutzmann S; Bader L; Blokesch M
    ISME J; 2022 Jul; 16(7):1868-1872. PubMed ID: 35411099
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Molecular analysis of Vibrio cholerae O1, O139, non-O1, and non-O139 strains: clonal relationships between clinical and environmental isolates.
    Singh DV; Matte MH; Matte GR; Jiang S; Sabeena F; Shukla BN; Sanyal SC; Huq A; Colwell RR
    Appl Environ Microbiol; 2001 Feb; 67(2):910-21. PubMed ID: 11157262
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Pathogenicity and virulence regulation of
    Hsiao A; Zhu J
    Virulence; 2020 Dec; 11(1):1582-1599. PubMed ID: 33172314
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Vibrio cholerae's mysterious Seventh Pandemic island (VSP-II) encodes novel Zur-regulated zinc starvation genes involved in chemotaxis and cell congregation.
    Murphy SG; Johnson BA; Ledoux CM; Dörr T
    PLoS Genet; 2021 Jun; 17(6):e1009624. PubMed ID: 34153031
    [TBL] [Abstract][Full Text] [Related]  

  • 71.
    Beckman DA; Waters CM
    Infect Immun; 2023 Sep; 91(9):e0002623. PubMed ID: 37594274
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The Dynamics of Genetic Interactions between Vibrio metoecus and Vibrio cholerae, Two Close Relatives Co-Occurring in the Environment.
    Orata FD; Kirchberger PC; Méheust R; Barlow EJ; Tarr CL; Boucher Y
    Genome Biol Evol; 2015 Oct; 7(10):2941-54. PubMed ID: 26454015
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Antibiotic resistance in Vibrio cholerae: Understanding the ecology of resistance genes and mechanisms.
    Das B; Verma J; Kumar P; Ghosh A; Ramamurthy T
    Vaccine; 2020 Feb; 38 Suppl 1():A83-A92. PubMed ID: 31272870
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Crosstalks Between Gut Microbiota and
    Qin Z; Yang X; Chen G; Park C; Liu Z
    Front Cell Infect Microbiol; 2020; 10():582554. PubMed ID: 33194819
    [No Abstract]   [Full Text] [Related]  

  • 75. Quorum Regulated Resistance of Vibrio cholerae against Environmental Bacteriophages.
    Hoque MM; Naser IB; Bari SM; Zhu J; Mekalanos JJ; Faruque SM
    Sci Rep; 2016 Nov; 6():37956. PubMed ID: 27892495
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Molecular mechanism of acquisition of the cholera toxin genes.
    Das B; Bischerour J; Barre FX
    Indian J Med Res; 2011 Feb; 133(2):195-200. PubMed ID: 21415494
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A Putative Acetylation System in Vibrio cholerae Modulates Virulence in Arthropod Hosts.
    Liimatta K; Flaherty E; Ro G; Nguyen DK; Prado C; Purdy AE
    Appl Environ Microbiol; 2018 Nov; 84(21):. PubMed ID: 30143508
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Molecular insights into Vibrio cholerae's intra-amoebal host-pathogen interactions.
    Van der Henst C; Vanhove AS; Drebes Dörr NC; Stutzmann S; Stoudmann C; Clerc S; Scrignari T; Maclachlan C; Knott G; Blokesch M
    Nat Commun; 2018 Aug; 9(1):3460. PubMed ID: 30150745
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Vibrio cholerae Colonization of Soft-Shelled Turtles.
    Wang J; Yan M; Gao H; Lu X; Kan B
    Appl Environ Microbiol; 2017 Jul; 83(14):. PubMed ID: 28600312
    [No Abstract]   [Full Text] [Related]  

  • 80. Comparative core/pan genome analysis of Vibrio cholerae isolates from Pakistan.
    Zeb S; Gulfam SM; Bokhari H
    Infect Genet Evol; 2020 Aug; 82():104316. PubMed ID: 32278144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.