These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 29447117)
1. On the high-lift characteristics of a bio-inspired, slotted delta wing. Sheppard KA; Rival DE Bioinspir Biomim; 2018 Apr; 13(3):036008. PubMed ID: 29447117 [TBL] [Abstract][Full Text] [Related]
2. The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency. Thielicke W; Stamhuis EJ Bioinspir Biomim; 2018 Aug; 13(5):056015. PubMed ID: 30043756 [TBL] [Abstract][Full Text] [Related]
3. Computational investigation of wing-body interaction and its lift enhancement effect in hummingbird forward flight. Wang J; Ren Y; Li C; Dong H Bioinspir Biomim; 2019 Jun; 14(4):046010. PubMed ID: 31096194 [TBL] [Abstract][Full Text] [Related]
4. Multi-cored vortices support function of slotted wing tips of birds in gliding and flapping flight. KleinHeerenbrink M; Johansson LC; Hedenström A J R Soc Interface; 2017 May; 14(130):. PubMed ID: 28539482 [TBL] [Abstract][Full Text] [Related]
5. Owl-inspired leading-edge serrations play a crucial role in aerodynamic force production and sound suppression. Rao C; Ikeda T; Nakata T; Liu H Bioinspir Biomim; 2017 Jul; 12(4):046008. PubMed ID: 28675148 [TBL] [Abstract][Full Text] [Related]
6. Flow structure modifications by leading-edge tubercles on a 3D wing. Kim H; Kim J; Choi H Bioinspir Biomim; 2018 Oct; 13(6):066011. PubMed ID: 30362460 [TBL] [Abstract][Full Text] [Related]
7. Feather roughness reduces flow separation during low Reynolds number glides of swifts. van Bokhorst E; de Kat R; Elsinga GE; Lentink D J Exp Biol; 2015 Oct; 218(Pt 20):3179-91. PubMed ID: 26347563 [TBL] [Abstract][Full Text] [Related]
8. Bioinspired wingtip devices: a pathway to improve aerodynamic performance during low Reynolds number flight. Lynch M; Mandadzhiev B; Wissa A Bioinspir Biomim; 2018 Mar; 13(3):036003. PubMed ID: 29388556 [TBL] [Abstract][Full Text] [Related]
9. Modulation of leading edge vorticity and aerodynamic forces in flexible flapping wings. Zhao L; Deng X; Sane SP Bioinspir Biomim; 2011 Sep; 6(3):036007. PubMed ID: 21852729 [TBL] [Abstract][Full Text] [Related]
10. The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing. Phillips N; Knowles K; Bomphrey RJ Bioinspir Biomim; 2015 Oct; 10(5):056020. PubMed ID: 26451802 [TBL] [Abstract][Full Text] [Related]
11. Leading-edge curvature effect on aerodynamic performance of flapping wings in hover and forward flight. Addo-Akoto R; Han JS; Han JH Bioinspir Biomim; 2024 Jul; 19(5):. PubMed ID: 38955342 [TBL] [Abstract][Full Text] [Related]
12. Combined particle-image velocimetry and force analysis of the three-dimensional fluid-structure interaction of a natural owl wing. Winzen A; Roidl B; Schröder W Bioinspir Biomim; 2016 Apr; 11(2):026005. PubMed ID: 27033298 [TBL] [Abstract][Full Text] [Related]
13. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio. Kruyt JW; van Heijst GF; Altshuler DL; Lentink D J R Soc Interface; 2015 Apr; 12(105):. PubMed ID: 25788539 [TBL] [Abstract][Full Text] [Related]
14. Effects of flexibility and aspect ratio on the aerodynamic performance of flapping wings. Fu J; Liu X; Shyy W; Qiu H Bioinspir Biomim; 2018 Mar; 13(3):036001. PubMed ID: 29372888 [TBL] [Abstract][Full Text] [Related]
15. Investigation of a bio-inspired lift-enhancing effector on a 2D airfoil. Johnston J; Gopalarathnam A Bioinspir Biomim; 2012 Sep; 7(3):036003. PubMed ID: 22498691 [TBL] [Abstract][Full Text] [Related]
16. The leading-edge vortex over a swift-like high-aspect-ratio wing with nonlinear swept-back geometry. Ben-Gida H; Gurka R Bioinspir Biomim; 2022 Oct; 17(6):. PubMed ID: 36261048 [TBL] [Abstract][Full Text] [Related]
17. Particle-image velocimetry investigation of the fluid-structure interaction mechanisms of a natural owl wing. Winzen A; Roidl B; Schröder W Bioinspir Biomim; 2015 Sep; 10(5):056009. PubMed ID: 26372422 [TBL] [Abstract][Full Text] [Related]
18. Aerodynamic robustness in owl-inspired leading-edge serrations: a computational wind-gust model. Rao C; Liu H Bioinspir Biomim; 2018 Jul; 13(5):056002. PubMed ID: 29882513 [TBL] [Abstract][Full Text] [Related]
19. A bio-inspired device for drag reduction on a three-dimensional model vehicle. Kim D; Lee H; Yi W; Choi H Bioinspir Biomim; 2016 Mar; 11(2):026004. PubMed ID: 26963693 [TBL] [Abstract][Full Text] [Related]
20. Ground effect on the aerodynamics of three-dimensional hovering wings. Lu H; Lua KB; Lee YJ; Lim TT; Yeo KS Bioinspir Biomim; 2016 Oct; 11(6):066003. PubMed ID: 27780156 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]