BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 29447375)

  • 1. Coupling individual kernel-filling processes with source-sink interactions into GREENLAB-Maize.
    Ma Y; Chen Y; Zhu J; Meng L; Guo Y; Li B; Hoogenboom G
    Ann Bot; 2018 Apr; 121(5):961-973. PubMed ID: 29447375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parameter optimization and field validation of the functional-structural model GREENLAB for maize at different population densities.
    Ma Y; Wen M; Guo Y; Li B; Cournède PH; de Reffye P
    Ann Bot; 2008 May; 101(8):1185-94. PubMed ID: 17921525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parameter optimization and field validation of the functional-structural model GREENLAB for maize.
    Guo Y; Ma Y; Zhan Z; Li B; Dingkuhn M; Luquet D; De Reffye P
    Ann Bot; 2006 Feb; 97(2):217-30. PubMed ID: 16390847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of In Vitro Kernel Culture to Study Maize Nitrogen and Carbohydrate Metabolism.
    Seebauer JR; Below FE
    Methods Mol Biol; 2018; 1676():3-13. PubMed ID: 28986901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parameter stability of the functional-structural plant model GREENLAB as affected by variation within populations, among seasons and among growth stages.
    Ma Y; Li B; Zhan Z; Guo Y; Luquet D; de Reffye P; Dingkuhn M
    Ann Bot; 2007 Jan; 99(1):61-73. PubMed ID: 17158141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of kernel weight and kernel water relations by post-flowering source-sink ratio in maize.
    Borrás L; Westgate ME; Otegui ME
    Ann Bot; 2003 Jun; 91(7):857-67. PubMed ID: 12730070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of maize organ-specific drought stress response on yields from transcriptome analysis.
    Wang B; Liu C; Zhang D; He C; Zhang J; Li Z
    BMC Plant Biol; 2019 Aug; 19(1):335. PubMed ID: 31370805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of fruit-set and trophic competition and optimization of yield advantages in six Capsicum cultivars using functional-structural plant modelling.
    Ma YT; Wubs AM; Mathieu A; Heuvelink E; Zhu JY; Hu BG; Cournède PH; de Reffye P
    Ann Bot; 2011 Apr; 107(5):793-803. PubMed ID: 21097946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of maize kernel weight and carbohydrate metabolism by abscisic acid applied at the early and middle post-pollination stages in vitro.
    Zhang L; Li XH; Gao Z; Shen S; Liang XG; Zhao X; Lin S; Zhou SL
    J Plant Physiol; 2017 Sep; 216():1-10. PubMed ID: 28544894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seasonal and diurnal patterns of non-structural carbohydrates in source and sink tissues in field maize.
    Liang XG; Gao Z; Zhang L; Shen S; Zhao X; Liu YP; Zhou LL; Paul MJ; Zhou SL
    BMC Plant Biol; 2019 Nov; 19(1):508. PubMed ID: 31752685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation between dynamic tomato fruit-set and source-sink ratio: a common relationship for different plant densities and seasons?
    Kang M; Yang L; Zhang B; de Reffye P
    Ann Bot; 2011 Apr; 107(5):805-15. PubMed ID: 21183453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A robust, high-throughput method for computing maize ear, cob, and kernel attributes automatically from images.
    Miller ND; Haase NJ; Lee J; Kaeppler SM; de Leon N; Spalding EP
    Plant J; 2017 Jan; 89(1):169-178. PubMed ID: 27585732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of carbon and nitrogen metabolism in the productivity of maize.
    Swank JC; Below FE; Lambert RJ; Hageman RH
    Plant Physiol; 1982 Oct; 70(4):1185-90. PubMed ID: 16662636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential Regulation of Kernel Set and Potential Kernel Weight by Nitrogen Supply and Carbohydrate Availability in Maize Genotypes Contrasting in Nitrogen Use Efficiency.
    Paponov IA; Paponov M; Sambo P; Engels C
    Front Plant Sci; 2020; 11():586. PubMed ID: 32499807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density resistance evaluation of maize varieties through new "Density-Yield Model" and quantification of varietal response to gradual planting density pressure.
    Tang L; Ma W; Noor MA; Li L; Hou H; Zhang X; Zhao M
    Sci Rep; 2018 Nov; 8(1):17281. PubMed ID: 30470761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship of source and sink in determining kernel composition of maize.
    Seebauer JR; Singletary GW; Krumpelman PM; Ruffo ML; Below FE
    J Exp Bot; 2010; 61(2):511-9. PubMed ID: 19917600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-silking Phosphorus Recycling and Carbon Partitioning in Maize Under Low to High Phosphorus Inputs and Their Effects on Grain Yield.
    Wang C; Ning P
    Front Plant Sci; 2019; 10():784. PubMed ID: 31249585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computing competition for light in the GREENLAB model of plant growth: a contribution to the study of the effects of density on resource acquisition and architectural development.
    Cournède PH; Mathieu A; Houllier F; Barthélémy D; de Reffye P
    Ann Bot; 2008 May; 101(8):1207-19. PubMed ID: 18037666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combination of suitable planting density and nitrogen rate for high yield maize and their source-sink relationship in Northwest China.
    Wu X; Tong L; Kang S; Du T; Ding R; Li S; Chen Y
    J Sci Food Agric; 2023 Aug; 103(11):5300-5311. PubMed ID: 37016583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does the structure-function model GREENLAB deal with crop phenotypic plasticity induced by plant spacing? A case study on tomato.
    Dong Q; Louarn G; Wang Y; Barczi JF; de Reffye P
    Ann Bot; 2008 May; 101(8):1195-206. PubMed ID: 18199575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.