These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 29447381)

  • 1. DNA mismatch repair and oligonucleotide end-protection promote base-pair substitution distal from a CRISPR/Cas9-induced DNA break.
    Harmsen T; Klaasen S; van de Vrugt H; Te Riele H
    Nucleic Acids Res; 2018 Apr; 46(6):2945-2955. PubMed ID: 29447381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insertional Mutagenesis by CRISPR/Cas9 Ribonucleoprotein Gene Editing in Cells Targeted for Point Mutation Repair Directed by Short Single-Stranded DNA Oligonucleotides.
    Rivera-Torres N; Banas K; Bialk P; Bloh KM; Kmiec EB
    PLoS One; 2017; 12(1):e0169350. PubMed ID: 28052104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LNA modification of single-stranded DNA oligonucleotides allows subtle gene modification in mismatch-repair-proficient cells.
    van Ravesteyn TW; Dekker M; Fish A; Sixma TK; Wolters A; Dekker RJ; Te Riele HP
    Proc Natl Acad Sci U S A; 2016 Apr; 113(15):4122-7. PubMed ID: 26951689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient oligo nucleotide mediated CRISPR-Cas9 gene editing in Aspergilli.
    Nødvig CS; Hoof JB; Kogle ME; Jarczynska ZD; Lehmbeck J; Klitgaard DK; Mortensen UH
    Fungal Genet Biol; 2018 Jun; 115():78-89. PubMed ID: 29325827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of site-specific mutant mice using the CRISPR/Cas9 system.
    Bai M; Li Q; Shao YJ; Huang YH; Li DL; Ma YL
    Yi Chuan; 2015 Oct; 37(10):1029-35. PubMed ID: 26496755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient SSA-mediated precise genome editing using CRISPR/Cas9.
    Li X; Bai Y; Cheng X; Kalds PGT; Sun B; Wu Y; Lv H; Xu K; Zhang Z
    FEBS J; 2018 Sep; 285(18):3362-3375. PubMed ID: 30085411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of internally nuclease-protected single-strand DNA oligonucleotides and silencing of the mismatch repair protein, MSH2, enhances the replication of corrected cells following gene editing.
    Papaioannou I; Disterer P; Owen JS
    J Gene Med; 2009 Mar; 11(3):267-74. PubMed ID: 19153972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Bacterial Immunity and Mammalian Genome Editing via RNA-Polymerase-Mediated Dislodging of Cas9 from Double-Strand DNA Breaks.
    Clarke R; Heler R; MacDougall MS; Yeo NC; Chavez A; Regan M; Hanakahi L; Church GM; Marraffini LA; Merrill BJ
    Mol Cell; 2018 Jul; 71(1):42-55.e8. PubMed ID: 29979968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics and Fidelity of the Repair of Cas9-Induced Double-Strand DNA Breaks.
    Brinkman EK; Chen T; de Haas M; Holland HA; Akhtar W; van Steensel B
    Mol Cell; 2018 Jun; 70(5):801-813.e6. PubMed ID: 29804829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair.
    Jasin M; Haber JE
    DNA Repair (Amst); 2016 Aug; 44():6-16. PubMed ID: 27261202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene Editing With TALEN and CRISPR/Cas in Rice.
    Bi H; Yang B
    Prog Mol Biol Transl Sci; 2017; 149():81-98. PubMed ID: 28712502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analyses of point mutation repair and allelic heterogeneity generated by CRISPR/Cas9 and single-stranded DNA oligonucleotides.
    Bialk P; Sansbury B; Rivera-Torres N; Bloh K; Man D; Kmiec EB
    Sci Rep; 2016 Sep; 6():32681. PubMed ID: 27609304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. APOBEC3 induces mutations during repair of CRISPR-Cas9-generated DNA breaks.
    Lei L; Chen H; Xue W; Yang B; Hu B; Wei J; Wang L; Cui Y; Li W; Wang J; Yan L; Shang W; Gao J; Sha J; Zhuang M; Huang X; Shen B; Yang L; Chen J
    Nat Struct Mol Biol; 2018 Jan; 25(1):45-52. PubMed ID: 29323274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced integration of large DNA into E. coli chromosome by CRISPR/Cas9.
    Chung ME; Yeh IH; Sung LY; Wu MY; Chao YP; Ng IS; Hu YC
    Biotechnol Bioeng; 2017 Jan; 114(1):172-183. PubMed ID: 27454445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cas9-assisted recombineering in C. elegans: genome editing using in vivo assembly of linear DNAs.
    Paix A; Schmidt H; Seydoux G
    Nucleic Acids Res; 2016 Sep; 44(15):e128. PubMed ID: 27257074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of Gene Editing Activity Directed by Single-Stranded Oligonucleotides and CRISPR/Cas9 Systems.
    Bialk P; Rivera-Torres N; Strouse B; Kmiec EB
    PLoS One; 2015; 10(6):e0129308. PubMed ID: 26053390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extensive trimming of short single-stranded DNA oligonucleotides during replication-coupled gene editing in mammalian cells.
    van Ravesteyn TW; Arranz Dols M; Pieters W; Dekker M; Te Riele H
    PLoS Genet; 2020 Oct; 16(10):e1009041. PubMed ID: 33119594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HideRNAs protect against CRISPR-Cas9 re-cutting after successful single base-pair gene editing.
    Harmsen TJW; Pritchard CEJ; Riepsaame J; van de Vrugt HJ; Huijbers IJ; Te Riele H
    Sci Rep; 2022 Jun; 12(1):9606. PubMed ID: 35688932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chimeric RNA: DNA TracrRNA Improves Homology-Directed Repair
    Simone BW; Lee HB; Daby CL; Ata H; Restrepo-Castillo S; Martínez-Gálvez G; Kar B; Gendron WAC; Clark KJ; Ekker SC
    CRISPR J; 2022 Feb; 5(1):40-52. PubMed ID: 34935462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-Mediated Base Editing without DNA Double-Strand Breaks.
    Plosky BS
    Mol Cell; 2016 May; 62(4):477-8. PubMed ID: 27203175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.