BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 29447671)

  • 21. A three-line lateral flow biosensor for logic detection of microRNA based on Y-shaped junction DNA and target recycling amplification.
    Huang Y; Wang W; Wu T; Xu LP; Wen Y; Zhang X
    Anal Bioanal Chem; 2016 Nov; 408(28):8195-8202. PubMed ID: 27624762
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DSN/TdT recycling digestion based cyclic amplification strategy for microRNA assay.
    He JL; Mei TT; Tang L; Liao SQ; Cao Z
    Talanta; 2020 Nov; 219():121173. PubMed ID: 32887095
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Double-loop hairpin probe and doxorubicin-loaded gold nanoparticles for the ultrasensitive electrochemical sensing of microRNA.
    Tao Y; Yin D; Jin M; Fang J; Dai T; Li Y; Li Y; Pu Q; Xie G
    Biosens Bioelectron; 2017 Oct; 96():99-105. PubMed ID: 28475957
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Target-initiated labeling for the dual-amplified detection of multiple microRNAs.
    Wang Y; Lau C; Lu J
    Anal Chim Acta; 2017 Nov; 992():76-84. PubMed ID: 29054152
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Colorimetric detection of sequence-specific microRNA based on duplex-specific nuclease-assisted nanoparticle amplification.
    Wang Q; Li RD; Yin BC; Ye BC
    Analyst; 2015 Sep; 140(18):6306-12. PubMed ID: 26258182
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enzyme-free detection of sequence-specific microRNAs based on nanoparticle-assisted signal amplification strategy.
    Li RD; Wang Q; Yin BC; Ye BC
    Biosens Bioelectron; 2016 Mar; 77():995-1000. PubMed ID: 26547010
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Smartphone-assisted fluorescent analysis of polyT-Cu-nanoprobes using nucleic acid amplification test for the diagnosis of tuberculosis.
    Chen CA; Huang YJ; Yi-Ju Ho N; Huang TH; Tsai TT
    Anal Biochem; 2021 Oct; 630():114340. PubMed ID: 34411550
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A label-free method for detecting biothiols based on poly(thymine)-templated copper nanoparticles.
    Zhang L; Cai QY; Li J; Ge J; Wang JY; Dong ZZ; Li ZH
    Biosens Bioelectron; 2015 Jul; 69():77-82. PubMed ID: 25703731
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Visual and portable strategy for copper(II) detection based on a striplike poly(thymine)-caged and microwell-printed hydrogel.
    Qing Z; Mao Z; Qing T; He X; Zou Z; He D; Shi H; Huang J; Liu J; Wang K
    Anal Chem; 2014 Nov; 86(22):11263-8. PubMed ID: 25325821
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bright fluorescent nucleic acid detection with CRISPR-Cas12a and poly(thymine) templated copper nanoparticles.
    Bogers JFM; Berghuis NF; Busker RW; van Booma A; Paauw A; van Leeuwen HC
    Biol Methods Protoc; 2021; 6(1):bpaa020. PubMed ID: 33628946
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cascade Signal Amplification Based on Copper Nanoparticle-Reported Rolling Circle Amplification for Ultrasensitive Electrochemical Detection of the Prostate Cancer Biomarker.
    Zhu Y; Wang H; Wang L; Zhu J; Jiang W
    ACS Appl Mater Interfaces; 2016 Feb; 8(4):2573-81. PubMed ID: 26765624
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Poly(thymine)-templated selective formation of fluorescent copper nanoparticles.
    Qing Z; He X; He D; Wang K; Xu F; Qing T; Yang X
    Angew Chem Int Ed Engl; 2013 Sep; 52(37):9719-22. PubMed ID: 23881724
    [No Abstract]   [Full Text] [Related]  

  • 33. Fe₃O₄@Ag magnetic nanoparticles for microRNA capture and duplex-specific nuclease signal amplification based SERS detection in cancer cells.
    Pang Y; Wang C; Wang J; Sun Z; Xiao R; Wang S
    Biosens Bioelectron; 2016 May; 79():574-80. PubMed ID: 26749099
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sensitive detection of miRNA based on enzyme-propelled multiple photoinduced electron transfer strategy.
    Yang Y; Liu S; Cui X; Yang L; Zhang J; Mao X; Gao Y
    Mikrochim Acta; 2021 Jun; 188(6):219. PubMed ID: 34075480
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultrasensitive and Multiple Disease-Related MicroRNA Detection Based on Tetrahedral DNA Nanostructures and Duplex-Specific Nuclease-Assisted Signal Amplification.
    Xu F; Dong H; Cao Y; Lu H; Meng X; Dai W; Zhang X; Al-Ghanim KA; Mahboob S
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33499-33505. PubMed ID: 27960393
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Label-free and non-enzymatic detection of DNA based on hybridization chain reaction amplification and dsDNA-templated copper nanoparticles.
    Song C; Yang X; Wang K; Wang Q; Huang J; Liu J; Liu W; Liu P
    Anal Chim Acta; 2014 May; 827():74-9. PubMed ID: 24832997
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Poly(thymine)-templated fluorescent copper nanoparticles for ultrasensitive label-free detection of Pb²⁺ ion.
    Ou L; Li X; Liu H; Li L; Chu X
    Anal Sci; 2014; 30(7):723-7. PubMed ID: 25007930
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Label-Free miRNA-21 Analysis Based on Strand Displacement and Terminal Deoxynucleotidyl Transferase-Assisted Amplification Strategy.
    Yan Y; Zhao H; Fang Y; Ma C; Chen J
    Biosensors (Basel); 2022 May; 12(5):. PubMed ID: 35624629
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A nuclease-assisted label-free aptasensor for fluorescence turn-on detection of ATP based on the in situ formation of copper nanoparticles.
    Song Q; Wang R; Sun F; Chen H; Wang Z; Na N; Ouyang J
    Biosens Bioelectron; 2017 Jan; 87():760-763. PubMed ID: 27649332
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A fluorescent biosensor for protein detection based on poly(thymine)-templated copper nanoparticles and terminal protection of small molecule-linked DNA.
    Wang HB; Zhang HD; Chen Y; Liu YM
    Biosens Bioelectron; 2015 Dec; 74():581-6. PubMed ID: 26190469
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.