BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 29447975)

  • 1. Profiling of novel microRNAs elicited by EV71 and CA16 infection in human bronchial epithelial cells using high-throughput sequencing.
    Song J; Hu Y; Jiang X; Zhu W; Wu Z; Dong S
    Virus Res; 2018 Mar; 247():111-119. PubMed ID: 29447975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison analysis of microRNAs in response to EV71 and CA16 infection in human bronchial epithelial cells by high-throughput sequencing to reveal differential infective mechanisms.
    Hu Y; Song J; Liu L; Li J; Tang B; Zhang Y; Wang J; Wang L; Fan S; Feng M; Li Q
    Virus Res; 2017 Jan; 228():90-101. PubMed ID: 27890633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different microRNA profiles reveal the diverse outcomes induced by EV71 and CA16 infection in human umbilical vein endothelial cells using high-throughput sequencing.
    Song J; Hu Y; Li J; Zheng H; Wang J; Guo L; Ning R; Li H; Yang Z; Fan H; Liu L
    PLoS One; 2017; 12(5):e0177657. PubMed ID: 28531227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Throughput Sequencing of Putative Novel microRNAs in Rhesus Monkey Peripheral Blood Mononuclear Cells following EV71 and CA16 Infection.
    Song J; Jiang X; Hu Y; Li H; Zhang X; Xu J; Li W; Zheng X; Dong S
    Intervirology; 2018; 61(3):133-142. PubMed ID: 30404089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative analysis of putative novel microRNA expression profiles induced by enterovirus 71 and coxsackievirus A16 infections in human umbilical vein endothelial cells using high-throughput sequencing.
    Song J; Hu Y; Zheng H; Guo L; Huang X; Jiang X; Li W; Li J; Yang Z; Dong S; Liu L
    Infect Genet Evol; 2019 Sep; 73():401-410. PubMed ID: 31176031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different microRNA alterations contribute to diverse outcomes following EV71 and CA16 infections: Insights from high-throughput sequencing in rhesus monkey peripheral blood mononuclear cells.
    Hu Y; Song J; Liu L; Li J; Tang B; Wang J; Zhang X; Zhang Y; Wang L; Liao Y; He Z; Li Q
    Int J Biochem Cell Biol; 2016 Dec; 81(Pt A):20-31. PubMed ID: 27765603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential expression of miRNAs in enterovirus 71-infected cells.
    Xun M; Ma CF; Du QL; Ji YH; Xu JR
    Virol J; 2015 Apr; 12():56. PubMed ID: 25889836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global gene expression analysis of peripheral blood mononuclear cells in rhesus monkey infants with CA16 infection-induced HFMD.
    Song J; Hu Y; Hu Y; Wang J; Zhang X; Wang L; Guo L; Wang Y; Ning R; Liao Y; Zhang Y; Zheng H; Shi H; He Z; Li Q; Liu L
    Virus Res; 2016 Mar; 214():1-10. PubMed ID: 26775814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Detection of enterovirus 71 and coxsackievirus A16 from children with hand, foot and mouth disease in Shanghai, 2002].
    Yang ZH; Zhu QR; Li XZ; Wang XH; Wang JS; Hu JY; Tang W; Cui AL
    Zhonghua Er Ke Za Zhi; 2005 Sep; 43(9):648-52. PubMed ID: 16191294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic Identification and Bioinformatic Analysis of MicroRNAs in Response to Infections of Coxsackievirus A16 and Enterovirus 71.
    Zhu Z; Qi Y; Fan H; Cui L; Shi Z
    Biomed Res Int; 2016; 2016():4302470. PubMed ID: 27843944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing Enterovirus 71 with Coxsackievirus A16 by analyzing nucleotide sequences and antigenicity of recombinant proteins of VP1s and VP4s.
    Li Y; Zhu R; Qian Y; Deng J; Sun Y; Liu L; Wang F; Zhao L
    BMC Microbiol; 2011 Nov; 11():246. PubMed ID: 22050722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome analysis reveals dynamic changes in coxsackievirus A16 infected HEK 293T cells.
    Jin J; Li R; Jiang C; Zhang R; Ge X; Liang F; Sheng X; Dai W; Chen M; Wu J; Xiao J; Su W
    BMC Genomics; 2017 Jan; 18(Suppl 1):933. PubMed ID: 28198671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome sequencing analysis of SH-SY5Y cells infected with EV71 reveals the potential neuropathic mechanisms.
    Hu Y; Xu Y; Huang Z; Deng Z; Fan J; Yang R; Ma H; Song J; Zhang Y
    Virus Res; 2020 Jun; 282():197945. PubMed ID: 32220619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cryo-electron microscopy study of insect cell-expressed enterovirus 71 and coxsackievirus a16 virus-like particles provides a structural basis for vaccine development.
    Gong M; Zhu H; Zhou J; Yang C; Feng J; Huang X; Ji G; Xu H; Zhu P
    J Virol; 2014 Jun; 88(11):6444-52. PubMed ID: 24672036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel inactivated enterovirus 71 vaccine can elicit cross-protective immunity against coxsackievirus A16 in mice.
    Yang L; Liu Y; Li S; Zhao H; Lin Q; Yu H; Huang X; Zheng Q; Cheng T; Xia N
    Vaccine; 2016 Nov; 34(48):5938-5945. PubMed ID: 27771182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. microRNA-4516 Contributes to Different Functions of Epithelial Permeability Barrier by Targeting Poliovirus Receptor Related Protein 1 in Enterovirus 71 and Coxsackievirus A16 Infections.
    Hu Y; Song J; Liu L; Zhang Y; Wang L; Li Q
    Front Cell Infect Microbiol; 2018; 8():110. PubMed ID: 29686973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of the toll-like receptor 7-dependent type I interferon production pathway by autophagy resulting from enterovirus 71 and coxsackievirus A16 infections facilitates their replication.
    Song J; Hu Y; Li J; Zheng H; Wang J; Guo L; Shi H; Liu L
    Arch Virol; 2018 Jan; 163(1):135-144. PubMed ID: 29052054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative proteome analyses of host protein expression in response to Enterovirus 71 and Coxsackievirus A16 infections.
    Lee JJ; Seah JB; Chow VT; Poh CL; Tan EL
    J Proteomics; 2011 Sep; 74(10):2018-24. PubMed ID: 21621020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Establishment of cell lines with increased susceptibility to EV71/CA16 by stable overexpression of SCARB2.
    Li X; Fan P; Jin J; Su W; An D; Xu L; Sun S; Zhang Y; Meng X; Gao F; Kong W; Jiang C
    Virol J; 2013 Aug; 10():250. PubMed ID: 23919614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applicability of duplex real time and lateral flow strip reverse-transcription recombinase aided amplification assays for the detection of Enterovirus 71 and Coxsackievirus A16.
    Li XN; Shen XX; Li MH; Qi JJ; Wang RH; Duan QX; Zhang RQ; Fan T; Bai XD; Fan GH; Xie Y; Ma XJ
    Virol J; 2019 Dec; 16(1):166. PubMed ID: 31888694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.