These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 29448022)
1. Photosynthesis and mineralogy of Jania rubens at low pH/high pCO Porzio L; Buia MC; Ferretti V; Lorenti M; Rossi M; Trifuoggi M; Vergara A; Arena C Sci Total Environ; 2018 Jul; 628-629():375-383. PubMed ID: 29448022 [TBL] [Abstract][Full Text] [Related]
2. Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification. Kamenos NA; Burdett HL; Aloisio E; Findlay HS; Martin S; Longbone C; Dunn J; Widdicombe S; Calosi P Glob Chang Biol; 2013 Dec; 19(12):3621-8. PubMed ID: 23943376 [TBL] [Abstract][Full Text] [Related]
3. Consequences of Warming and Acidification for the Temperate Articulated Coralline Alga, Calliarthron Tuberculosum (Florideophyceae, Rhodophyta). Donham EM; Hamilton SL; Aiello I; Price NN; Smith JE J Phycol; 2022 Aug; 58(4):517-529. PubMed ID: 35657106 [TBL] [Abstract][Full Text] [Related]
4. Ocean acidification alleviates low-temperature effects on growth and photosynthesis of the red alga Neosiphonia harveyi (Rhodophyta). Olischläger M; Wiencke C J Exp Bot; 2013 Dec; 64(18):5587-97. PubMed ID: 24127518 [TBL] [Abstract][Full Text] [Related]
5. Rhodoliths holobionts in a changing ocean: host-microbes interactions mediate coralline algae resilience under ocean acidification. Cavalcanti GS; Shukla P; Morris M; Ribeiro B; Foley M; Doane MP; Thompson CC; Edwards MS; Dinsdale EA; Thompson FL BMC Genomics; 2018 Sep; 19(1):701. PubMed ID: 30249182 [TBL] [Abstract][Full Text] [Related]
6. Major loss of coralline algal diversity in response to ocean acidification. Peña V; Harvey BP; Agostini S; Porzio L; Milazzo M; Horta P; Le Gall L; Hall-Spencer JM Glob Chang Biol; 2021 Oct; 27(19):4785-4798. PubMed ID: 34268846 [TBL] [Abstract][Full Text] [Related]
7. High nutrient availability modulates photosynthetic performance and biochemical components of the economically important marine macroalga Kappaphycus alvarezii (Rhodophyta) in response to ocean acidification. Long C; Zhang Y; Wei Z; Long L Mar Environ Res; 2024 Feb; 194():106339. PubMed ID: 38182500 [TBL] [Abstract][Full Text] [Related]
8. Inorganic carbon utilization of tropical calcifying macroalgae and the impacts of intensive mariculture-derived coastal acidification on the physiological performance of the rhodolith Sporolithon sp. Narvarte BCV; Nelson WA; Roleda MY Environ Pollut; 2020 Nov; 266(Pt 1):115344. PubMed ID: 32829170 [TBL] [Abstract][Full Text] [Related]
9. Generality in multispecies responses to ocean acidification revealed through multiple hypothesis testing. Barner AK; Chan F; Hettinger A; Hacker SD; Marshall K; Menge BA Glob Chang Biol; 2018 Oct; 24(10):4464-4477. PubMed ID: 30047188 [TBL] [Abstract][Full Text] [Related]
10. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Koch M; Bowes G; Ross C; Zhang XH Glob Chang Biol; 2013 Jan; 19(1):103-32. PubMed ID: 23504724 [TBL] [Abstract][Full Text] [Related]
11. Coralline algae elevate pH at the site of calcification under ocean acidification. Cornwall CE; Comeau S; McCulloch MT Glob Chang Biol; 2017 Oct; 23(10):4245-4256. PubMed ID: 28370806 [TBL] [Abstract][Full Text] [Related]
12. Calcifying algae maintain settlement cues to larval abalone following algal exposure to extreme ocean acidification. O'Leary JK; Barry JP; Gabrielson PW; Rogers-Bennett L; Potts DC; Palumbi SR; Micheli F Sci Rep; 2017 Jul; 7(1):5774. PubMed ID: 28720836 [TBL] [Abstract][Full Text] [Related]
13. Effects of Ocean Acidification and Temperature Increases on the Photosynthesis of Tropical Reef Calcified Macroalgae. Scherner F; Pereira CM; Duarte G; Horta PA; E Castro CB; Barufi JB; Pereira SM PLoS One; 2016; 11(5):e0154844. PubMed ID: 27158820 [TBL] [Abstract][Full Text] [Related]
14. Effects of ocean acidification on population dynamics and community structure of crustose coralline algae. Ordoñez A; Doropoulos C; Diaz-Pulido G Biol Bull; 2014 Jun; 226(3):255-68. PubMed ID: 25070869 [TBL] [Abstract][Full Text] [Related]
15. Nitrogen enrichment offsets direct negative effects of ocean acidification on a reef-building crustose coralline alga. Johnson MD; Carpenter RC Biol Lett; 2018 Jul; 14(7):. PubMed ID: 29997188 [TBL] [Abstract][Full Text] [Related]
16. Inorganic carbon uptake strategies in coralline algae: Plasticity across evolutionary lineages under ocean acidification and warming. Bergstrom E; Ordoñez A; Ho M; Hurd C; Fry B; Diaz-Pulido G Mar Environ Res; 2020 Oct; 161():105107. PubMed ID: 32890983 [TBL] [Abstract][Full Text] [Related]
18. Phylomineralogy of the coralline red algae: correlation of skeletal mineralogy with molecular phylogeny. Smith AM; Sutherland JE; Kregting L; Farr TJ; Winter DJ Phytochemistry; 2012 Sep; 81():97-108. PubMed ID: 22795764 [TBL] [Abstract][Full Text] [Related]
19. The physiological response of marine diatoms to ocean acidification: differential roles of seawater pCO Shi D; Hong H; Su X; Liao L; Chang S; Lin W J Phycol; 2019 Jun; 55(3):521-533. PubMed ID: 30849184 [TBL] [Abstract][Full Text] [Related]
20. Resistance of corals and coralline algae to ocean acidification: physiological control of calcification under natural pH variability. Cornwall CE; Comeau S; DeCarlo TM; Moore B; D'Alexis Q; McCulloch MT Proc Biol Sci; 2018 Aug; 285(1884):. PubMed ID: 30089625 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]