These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 29448322)

  • 1. Normal modes of weak colloidal gels.
    Varga Z; Swan JW
    Phys Rev E; 2018 Jan; 97(1-1):012608. PubMed ID: 29448322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrodynamic lubrication in colloidal gels.
    Torre KW; de Graaf J
    Soft Matter; 2023 Oct; 19(38):7388-7398. PubMed ID: 37740405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pair mobility functions for rigid spheres in concentrated colloidal dispersions: Force, torque, translation, and rotation.
    Zia RN; Swan JW; Su Y
    J Chem Phys; 2015 Dec; 143(22):224901. PubMed ID: 26671398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of hydrodynamic interactions on the aggregation kinetics of sedimenting colloidal particles.
    Turetta L; Lattuada M
    Soft Matter; 2022 Feb; 18(8):1715-1730. PubMed ID: 35147636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrodynamic interactions enhance gelation in dispersions of colloids with short-ranged attraction and long-ranged repulsion.
    Varga Z; Swan J
    Soft Matter; 2016 Sep; 12(36):7670-81. PubMed ID: 27550538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and rheology of colloidal particle gels: insight from computer simulation.
    Dickinson E
    Adv Colloid Interface Sci; 2013 Nov; 199-200():114-27. PubMed ID: 23916723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pair mobility functions for rigid spheres in concentrated colloidal dispersions: Stresslet and straining motion couplings.
    Su Y; Swan JW; Zia RN
    J Chem Phys; 2017 Mar; 146(12):124903. PubMed ID: 28388164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggregation in colloidal suspensions: evaluation of the role of hydrodynamic interactions by means of numerical simulations.
    Tomilov A; Videcoq A; Cerbelaud M; Piechowiak MA; Chartier T; Ala-Nissila T; Bochicchio D; Ferrando R
    J Phys Chem B; 2013 Nov; 117(46):14509-17. PubMed ID: 24143912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "Dense diffusion" in colloidal glasses: short-ranged long-time self-diffusion as a mechanistic model for relaxation dynamics.
    Wang JG; Li Q; Peng X; McKenna GB; Zia RN
    Soft Matter; 2020 Aug; 16(31):7370-7389. PubMed ID: 32696798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusion and sedimentation in colloidal suspensions using multiparticle collision dynamics with a discrete particle model.
    Wani YM; Kovakas PG; Nikoubashman A; Howard MP
    J Chem Phys; 2022 Jan; 156(2):024901. PubMed ID: 35032985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics in dense hard-sphere colloidal suspensions.
    Orsi D; Fluerasu A; Moussaïd A; Zontone F; Cristofolini L; Madsen A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011402. PubMed ID: 22400568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brownian dynamics simulations of shear-induced aggregation of charged colloidal particles in the presence of hydrodynamic interactions.
    Lorenzo T; Marco L
    J Colloid Interface Sci; 2022 Oct; 624():637-649. PubMed ID: 35696787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Rotne-Prager-Yamakawa approximation for periodic systems in a shear flow.
    Mizerski KA; Wajnryb E; Zuk PJ; Szymczak P
    J Chem Phys; 2014 May; 140(18):184103. PubMed ID: 24832249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The hydrodynamics of colloidal gelation.
    Varga Z; Wang G; Swan J
    Soft Matter; 2015 Dec; 11(46):9009-19. PubMed ID: 26406284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generalized Rotne-Prager-Yamakawa approximation for Brownian dynamics in shear flow in bounded, unbounded, and periodic domains.
    Cichocki B; Szymczak P; Żuk PJ
    J Chem Phys; 2021 Mar; 154(12):124905. PubMed ID: 33810690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active Brownian filaments with hydrodynamic interactions: conformations and dynamics.
    Martín-Gómez A; Eisenstecken T; Gompper G; Winkler RG
    Soft Matter; 2019 May; 15(19):3957-3969. PubMed ID: 31012481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid sampling of stochastic displacements in Brownian dynamics simulations.
    Fiore AM; Balboa Usabiaga F; Donev A; Swan JW
    J Chem Phys; 2017 Mar; 146(12):124116. PubMed ID: 28388117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid sampling of stochastic displacements in Brownian dynamics simulations with stresslet constraints.
    Fiore AM; Swan JW
    J Chem Phys; 2018 Jan; 148(4):044114. PubMed ID: 29390810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rheological Signature of Frictional Interactions in Shear Thickening Suspensions.
    Royer JR; Blair DL; Hudson SD
    Phys Rev Lett; 2016 May; 116(18):188301. PubMed ID: 27203345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodynamic coupling of two rotating spheres trapped in harmonic potentials.
    Reichert M; Stark H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 1):031407. PubMed ID: 15089294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.