These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 29448344)
1. Multiple eigenmodes of the Rayleigh-Taylor instability observed for a fluid interface with smoothly varying density. Yu CX; Xue C; Liu J; Hu XY; Liu YY; Ye WH; Wang LF; Wu JF; Fan ZF Phys Rev E; 2018 Jan; 97(1-1):013102. PubMed ID: 29448344 [TBL] [Abstract][Full Text] [Related]
2. Multiple eigenmodes of the Rayleigh-Taylor instability observed for a fluid interface with smoothly varying density. II. Asymptotic solution and its interpretation. Dong M; Fan Z; Yu C Phys Rev E; 2019 Jan; 99(1-1):013109. PubMed ID: 30780233 [TBL] [Abstract][Full Text] [Related]
3. Solution to Rayleigh-Taylor instabilities: Bubbles, spikes, and their scalings. Mikaelian KO Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053009. PubMed ID: 25353882 [TBL] [Abstract][Full Text] [Related]
5. Multiple eigenmodes of the Rayleigh-Taylor instability observed for a fluid interface with smoothly varying density. III. Excitation and nonlinear evolution. Fan Z; Dong M Phys Rev E; 2020 Jun; 101(6-1):063103. PubMed ID: 32688480 [TBL] [Abstract][Full Text] [Related]
6. Evolution of Rayleigh-Taylor instability under interface discontinuous acceleration induced by radiation. Hu ZX; Zhang YS; Tian BL Phys Rev E; 2020 Apr; 101(4-1):043115. PubMed ID: 32422729 [TBL] [Abstract][Full Text] [Related]
7. Numerical computation of the Rayleigh-Taylor instability for a viscous fluid with regularized interface properties. González-Gutiérrez LM; de Andrea González A Phys Rev E; 2019 Jul; 100(1-1):013101. PubMed ID: 31499828 [TBL] [Abstract][Full Text] [Related]
8. Acceleration- and deceleration-phase nonlinear Rayleigh-Taylor growth at spherical interfaces. Clark DS; Tabak M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056308. PubMed ID: 16383746 [TBL] [Abstract][Full Text] [Related]
9. Multiscale character of the nonlinear coherent dynamics in the Rayleigh-Taylor instability. Abarzhi SI; Nishihara K; Rosner R Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036310. PubMed ID: 16605654 [TBL] [Abstract][Full Text] [Related]
10. Magnetic field generation in Rayleigh-Taylor unstable inertial confinement fusion plasmas. Srinivasan B; Dimonte G; Tang XZ Phys Rev Lett; 2012 Apr; 108(16):165002. PubMed ID: 22680725 [TBL] [Abstract][Full Text] [Related]
11. Evolution of the single-mode Rayleigh-Taylor instability under the influence of time-dependent accelerations. Ramaprabhu P; Karkhanis V; Banerjee R; Varshochi H; Khan M; Lawrie AG Phys Rev E; 2016 Jan; 93(1):013118. PubMed ID: 26871165 [TBL] [Abstract][Full Text] [Related]
12. Single-mode dynamics of the Rayleigh-Taylor instability at any density ratio. Ramaprabhu P; Dimonte G Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036314. PubMed ID: 15903581 [TBL] [Abstract][Full Text] [Related]
13. Understanding the structure of the turbulent mixing layer in hydrodynamic instabilities. Laney D; Bremer PT; Mascarenhas A; Miller P; Pascucci V IEEE Trans Vis Comput Graph; 2006; 12(5):1053-60. PubMed ID: 17080834 [TBL] [Abstract][Full Text] [Related]
14. Secondary instability of the spike-bubble structures induced by nonlinear Rayleigh-Taylor instability with a diffuse interface. Han L; Yuan J; Dong M; Fan Z Phys Rev E; 2021 Sep; 104(3-2):035108. PubMed ID: 34654080 [TBL] [Abstract][Full Text] [Related]
15. Limits of the potential flow approach to the single-mode Rayleigh-Taylor problem. Ramaprabhu P; Dimonte G; Young YN; Calder AC; Fryxell B Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066308. PubMed ID: 17280149 [TBL] [Abstract][Full Text] [Related]
16. Late-time quadratic growth in single-mode Rayleigh-Taylor instability. Wei T; Livescu D Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046405. PubMed ID: 23214698 [TBL] [Abstract][Full Text] [Related]
17. Numerical simulations of two-fluid turbulent mixing at large density ratios and applications to the Rayleigh-Taylor instability. Livescu D Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120185. PubMed ID: 24146007 [TBL] [Abstract][Full Text] [Related]
18. Nonlinear Rayleigh-Taylor growth in converging geometry. Clark DS; Tabak M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):055302. PubMed ID: 16089591 [TBL] [Abstract][Full Text] [Related]
19. Pure single-mode Rayleigh-Taylor instability for arbitrary Atwood numbers. Liu W; Wang X; Liu X; Yu C; Fang M; Ye W Sci Rep; 2020 Mar; 10(1):4201. PubMed ID: 32144289 [TBL] [Abstract][Full Text] [Related]