These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 29448388)

  • 1. Patterning of a cohesionless granular layer under pure shear.
    Alarcón H; Géminard JC; Melo F
    Phys Rev E; 2018 Jan; 97(1-1):012901. PubMed ID: 29448388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rheology of cohesive granular materials across multiple dense-flow regimes.
    Gu Y; Chialvo S; Sundaresan S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032206. PubMed ID: 25314436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of cohesion and shear modulus on the stability of a stretched granular layer.
    Alarcón H; Géminard JC; Melo F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061303. PubMed ID: 23367928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexural fracturing of a cohesive granular layer.
    Géminard JC; Champougny L; Lidon P; Melo F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):012301. PubMed ID: 22400603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compaction of noncohesive and cohesive granular materials under vibrations: Experiments and stochastic model.
    Mathonnet JE; Sornay P; Nicolas M; Dalloz-Dubrujeaud B
    Phys Rev E; 2017 Apr; 95(4-1):042904. PubMed ID: 28505849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shear flow of dense granular materials near smooth walls. II. Block formation and suppression of slip by rolling friction.
    Shojaaee Z; Brendel L; Török J; Wolf DE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011302. PubMed ID: 23005406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Granular friction, Coulomb failure, and the fluid-solid transition for horizontally shaken granular materials.
    Metcalfe G; Tennakoon SG; Kondic L; Schaeffer DG; Behringer RP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 1):031302. PubMed ID: 11909041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Softening induced instability of a stretched cohesive granular layer.
    Alarcón H; Ramos O; Vanel L; Vittoz F; Melo F; Géminard JC
    Phys Rev Lett; 2010 Nov; 105(20):208001. PubMed ID: 21231266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plug flow and the breakdown of Bagnold scaling in cohesive granular flows.
    Brewster R; Grest GS; Landry JW; Levine AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 1):061301. PubMed ID: 16485940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rheology of confined granular flows: scale invariance, glass transition, and friction weakening.
    Richard P; Valance A; Métayer JF; Sanchez P; Crassous J; Louge M; Delannay R
    Phys Rev Lett; 2008 Dec; 101(24):248002. PubMed ID: 19113671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shear strength of wet granular materials: Macroscopic cohesion and effective stress : Discrete numerical simulations, confronted to experimental measurements.
    Badetti M; Fall A; Chevoir F; Roux JN
    Eur Phys J E Soft Matter; 2018 May; 41(5):68. PubMed ID: 29802504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local fluctuations and spatial correlations in granular flows under constant-volume quasistatic shear.
    Guo N; Zhao J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042208. PubMed ID: 24827242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow of wet granular materials: A numerical study.
    Khamseh S; Roux JN; Chevoir F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022201. PubMed ID: 26382388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-speed tracking of rupture and clustering in freely falling granular streams.
    Royer JR; Evans DJ; Oyarte L; Guo Q; Kapit E; Möbius ME; Waitukaitis SR; Jaeger HM
    Nature; 2009 Jun; 459(7250):1110-3. PubMed ID: 19553995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms for slow strengthening in granular materials.
    Losert W; Geminard JC; Nasuno S; Gollub JP
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Apr; 61(4 Pt B):4060-8. PubMed ID: 11088198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization and instability in sheared granular materials: Role of friction and vibration.
    Kothari KR; Elbanna AE
    Phys Rev E; 2017 Feb; 95(2-1):022901. PubMed ID: 28297960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of interparticle friction and particle-scale elasticity in the shear-strength mechanism of three-dimensional granular media.
    Antony SJ; Kruyt NP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031308. PubMed ID: 19391936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shear profiles and localization in simulations of granular materials.
    Aharonov E; Sparks D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051302. PubMed ID: 12059546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shear flow of dense granular materials near smooth walls. I. Shear localization and constitutive laws in the boundary region.
    Shojaaee Z; Roux JN; Chevoir F; Wolf DE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011301. PubMed ID: 23005405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Friction and relative energy dissipation in sheared granular materials.
    Wang WJ; Kong XZ; Zhu ZG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):041302. PubMed ID: 17500887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.