These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 29448391)

  • 1. Relationship between the mechanisms of gamma rhythm generation and the magnitude of the macroscopic phase response function in a population of excitatory and inhibitory modified quadratic integrate-and-fire neurons.
    Akao A; Ogawa Y; Jimbo Y; Ermentrout GB; Kotani K
    Phys Rev E; 2018 Jan; 97(1-1):012209. PubMed ID: 29448391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analyzing the competition of gamma rhythms with delayed pulse-coupled oscillators in phase representation.
    Viriyopase A; Memmesheimer RM; Gielen S
    Phys Rev E; 2018 Aug; 98(2-1):022217. PubMed ID: 30253475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooperation and competition of gamma oscillation mechanisms.
    Viriyopase A; Memmesheimer RM; Gielen S
    J Neurophysiol; 2016 Aug; 116(2):232-51. PubMed ID: 26912589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Population dynamics of the modified theta model: macroscopic phase reduction and bifurcation analysis link microscopic neuronal interactions to macroscopic gamma oscillation.
    Kotani K; Yamaguchi I; Yoshida L; Jimbo Y; Ermentrout GB
    J R Soc Interface; 2014 Jun; 11(95):20140058. PubMed ID: 24647906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macroscopic phase resetting-curves determine oscillatory coherence and signal transfer in inter-coupled neural circuits.
    Dumont G; Gutkin B
    PLoS Comput Biol; 2019 May; 15(5):e1007019. PubMed ID: 31071085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paradoxical phase response of gamma rhythms facilitates their entrainment in heterogeneous networks.
    Xu X; Riecke H
    PLoS Comput Biol; 2021 Jun; 17(6):e1008575. PubMed ID: 34191796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dependency analysis of frequency and strength of gamma oscillations on input difference between excitatory and inhibitory neurons.
    Gu X; Han F; Wang Z
    Cogn Neurodyn; 2021 Jun; 15(3):501-515. PubMed ID: 34040674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macroscopic Gamma Oscillation With Bursting Neuron Model Under Stochastic Fluctuation.
    Yoshikai Y; Zheng T; Kotani K; Jimbo Y
    Neural Comput; 2023 Mar; 35(4):645-670. PubMed ID: 36827587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theta-Nested Gamma Oscillations in Next Generation Neural Mass Models.
    Segneri M; Bi H; Olmi S; Torcini A
    Front Comput Neurosci; 2020; 14():47. PubMed ID: 32547379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new regime for highly robust gamma oscillation with co-exist of accurate and weak synchronization in excitatory-inhibitory networks.
    Wang Z; Fan H; Han F
    Cogn Neurodyn; 2014 Aug; 8(4):335-44. PubMed ID: 25009675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Firing rate models for gamma oscillations in I-I and E-I networks.
    Lu Y; Rinzel J
    J Comput Neurosci; 2024 Nov; 52(4):247-266. PubMed ID: 39160322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane resonance enables stable and robust gamma oscillations.
    Moca VV; Nikolic D; Singer W; Mureşan RC
    Cereb Cortex; 2014 Jan; 24(1):119-42. PubMed ID: 23042733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A stochastic model of input effectiveness during irregular gamma rhythms.
    Dumont G; Northoff G; Longtin A
    J Comput Neurosci; 2016 Feb; 40(1):85-101. PubMed ID: 26610791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-range synchronization of gamma and beta oscillations and the plasticity of excitatory and inhibitory synapses: a network model.
    Bibbig A; Traub RD; Whittington MA
    J Neurophysiol; 2002 Oct; 88(4):1634-54. PubMed ID: 12364494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase-locking patterns underlying effective communication in exact firing rate models of neural networks.
    Reyner-Parra D; Huguet G
    PLoS Comput Biol; 2022 May; 18(5):e1009342. PubMed ID: 35584147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic behavior of a neural network model of locomotor control in the lamprey.
    Jung R; Kiemel T; Cohen AH
    J Neurophysiol; 1996 Mar; 75(3):1074-86. PubMed ID: 8867119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gamma oscillations as a mechanism for selective information transmission.
    Gielen S; Krupa M; Zeitler M
    Biol Cybern; 2010 Aug; 103(2):151-65. PubMed ID: 20422425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Several Classes of Voltage-Gated Ion Channel Conductances on Gamma and Theta Oscillations in a Hippocampal Microcircuit Model.
    Olteanu C; Habibollahi F; French C
    Front Comput Neurosci; 2021; 15():630271. PubMed ID: 33867962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Empirically constrained network models for contrast-dependent modulation of gamma rhythm in V1.
    Zachariou M; Roberts MJ; Lowet E; De Weerd P; Hadjipapas A
    Neuroimage; 2021 Apr; 229():117748. PubMed ID: 33460798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synchronization Through Uncorrelated Noise in Excitatory-Inhibitory Networks.
    Rebscher L; Obermayer K; Metzner C
    Front Comput Neurosci; 2022; 16():825865. PubMed ID: 35185505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.