These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 29448394)
1. Attenuation of slow (10-40 eV) electrons in soft nanoparticles: Size matters in argon clusters. Winkler M; Børve KJ Phys Rev E; 2018 Jan; 97(1-1):012604. PubMed ID: 29448394 [TBL] [Abstract][Full Text] [Related]
2. Alternative Approach for the Determination of Mean Free Paths of Electron Scattering in Liquid Water Based on Experimental Data. Schild A; Peper M; Perry C; Rattenbacher D; Wörner HJ J Phys Chem Lett; 2020 Feb; 11(3):1128-1134. PubMed ID: 31928019 [TBL] [Abstract][Full Text] [Related]
3. Effective attenuation lengths for quantitative determination of surface composition by Auger-electron spectroscopy and X-ray photoelectron spectroscopy. Jablonski A; Powell CJ J Electron Spectros Relat Phenomena; 2017 Jul; 281():1-2. PubMed ID: 29249851 [TBL] [Abstract][Full Text] [Related]
4. Electron attenuation in free, neutral ethane clusters. Winkler M; Myrseth V; Harnes J; Børve KJ J Chem Phys; 2014 Oct; 141(16):164305. PubMed ID: 25362297 [TBL] [Abstract][Full Text] [Related]
5. Cross sections for low-energy (1-100 eV) electron elastic and inelastic scattering in amorphous ice. Michaud M; Wen A; Sanche L Radiat Res; 2003 Jan; 159(1):3-22. PubMed ID: 12492364 [TBL] [Abstract][Full Text] [Related]
6. Electron scattering in large water clusters from photoelectron imaging with high harmonic radiation. Gartmann TE; Hartweg S; Ban L; Chasovskikh E; Yoder BL; Signorell R Phys Chem Chem Phys; 2018 Jun; 20(24):16364-16371. PubMed ID: 29872831 [TBL] [Abstract][Full Text] [Related]
7. Low energy electron attenuation lengths in core-shell nanoparticles. Jacobs MI; Kostko O; Ahmed M; Wilson KR Phys Chem Chem Phys; 2017 May; 19(20):13372-13378. PubMed ID: 28492688 [TBL] [Abstract][Full Text] [Related]
8. A model calculation of coherence effects in the elastic backscattering of very low energy electrons (1-20 eV) from amorphous ice. Liljequist D Int J Radiat Biol; 2012 Jan; 88(1-2):50-3. PubMed ID: 21615241 [TBL] [Abstract][Full Text] [Related]
9. Velocity map imaging of inelastic and elastic low energy electron scattering in organic nanoparticles. Kostko O; Jacobs MI; Xu B; Wilson KR; Ahmed M J Chem Phys; 2019 Nov; 151(18):184702. PubMed ID: 31731852 [TBL] [Abstract][Full Text] [Related]
10. Low-energy constraints on photoelectron spectra measured from liquid water and aqueous solutions. Malerz S; Trinter F; Hergenhahn U; Ghrist A; Ali H; Nicolas C; Saak CM; Richter C; Hartweg S; Nahon L; Lee C; Goy C; Neumark DM; Meijer G; Wilkinson I; Winter B; Thürmer S Phys Chem Chem Phys; 2021 Apr; 23(14):8246-8260. PubMed ID: 33710216 [TBL] [Abstract][Full Text] [Related]
11. Absolute scattering probabilities for subexcitation electrons in condensed H2O. Bader G; Chiasson J; Caron LG; Michaud M; Perluzzo G; Sanche L Radiat Res; 1988 Jun; 114(3):467-79. PubMed ID: 3375436 [TBL] [Abstract][Full Text] [Related]
12. Photoelectron angular distribution from free SiO Antonsson E; Langer B; Halfpap I; Gottwald J; Rühl E J Chem Phys; 2017 Jun; 146(24):244301. PubMed ID: 28668021 [TBL] [Abstract][Full Text] [Related]
13. The attenuation length of low energy electrons in Yb. Offi F; Iacobucci S; Petaccia L; Gorovikov S; Vilmercati P; Rizzo A; Ruocco A; Goldoni A; Stefani G; Panaccione G J Phys Condens Matter; 2010 Aug; 22(30):305002. PubMed ID: 21399353 [TBL] [Abstract][Full Text] [Related]
14. Absolute and effective cross-sections for low-energy electron-scattering processes within condensed matter. Bass AD; Sanche L Radiat Environ Biophys; 1998 Dec; 37(4):243-57. PubMed ID: 10052674 [TBL] [Abstract][Full Text] [Related]
15. Calculations of Electron Inelastic Mean Free Paths. XI. Data for Liquid Water for Energies from 50 eV to 30 keV. Shinotsuka H; Da B; Tanuma S; Yoshikawa H; Powell CJ; Penn DR Surf Interface Anal; 2017 Apr; 49(4):238-252. PubMed ID: 28751796 [TBL] [Abstract][Full Text] [Related]
16. Inelastic mean-free path and mean escape depth of 10-140 eV electrons in SiO Antonsson E; Gerke F; Langer B; Goroncy C; Dresch T; Leisner T; Graf C; Rühl E Phys Chem Chem Phys; 2023 Jun; 25(22):15173-15182. PubMed ID: 37222473 [TBL] [Abstract][Full Text] [Related]
17. Inelastic scattering of low-energy electrons in liquid water computed from optical-data models of the Bethe surface. Emfietzoglou D; Kyriakou I; Abril I; Garcia-Molina R; Nikjoo H Int J Radiat Biol; 2012 Jan; 88(1-2):22-8. PubMed ID: 21756061 [TBL] [Abstract][Full Text] [Related]
18. Ionization energies of argon clusters: a combined experimental and theoretical study. Echt O; Fiegele T; Rümmele M; Probst M; Matt-Leubner S; Urban J; Mach P; Leszczynski J; Scheier P; Märk TD J Chem Phys; 2005 Aug; 123(8):084313. PubMed ID: 16164297 [TBL] [Abstract][Full Text] [Related]
19. Low energy charged particles interacting with amorphous solid water layers. Horowitz Y; Asscher M J Chem Phys; 2012 Apr; 136(13):134701. PubMed ID: 22482574 [TBL] [Abstract][Full Text] [Related]
20. Effective attenuation length of an electron in liquid water between 10 and 600 eV. Suzuki Y; Nishizawa K; Kurahashi N; Suzuki T Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):010302. PubMed ID: 25122237 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]