These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 29448419)

  • 1. General relations between the power, efficiency, and dissipation for the irreversible heat engines in the nonlinear response regime.
    Iyyappan I; Ponmurugan M
    Phys Rev E; 2018 Jan; 97(1-1):012141. PubMed ID: 29448419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficiency Bounds for Minimally Nonlinear Irreversible Heat Engines with Broken Time-Reversal Symmetry.
    Liu Q; Li W; Zhang M; He J; Wang J
    Entropy (Basel); 2019 Jul; 21(7):. PubMed ID: 33267431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficiency and its bounds of minimally nonlinear irreversible heat engines at arbitrary power.
    Long R; Liu W
    Phys Rev E; 2016 Nov; 94(5-1):052114. PubMed ID: 27967103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constitutive relation for nonlinear response and universality of efficiency at maximum power for tight-coupling heat engines.
    Sheng S; Tu ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022136. PubMed ID: 25768487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficiency at and near maximum power of low-dissipation heat engines.
    Holubec V; Ryabov A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052125. PubMed ID: 26651665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erratum: General relations between the power, efficiency, and dissipation for the irreversible heat engines in the nonlinear response regime [Phys. Rev. E 97, 012141 (2018)].
    Iyyappan I; Ponmurugan M
    Phys Rev E; 2019 Sep; 100(3-2):039901. PubMed ID: 31640047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance optimization of minimally nonlinear irreversible heat engines and refrigerators under a trade-off figure of merit.
    Long R; Liu Z; Liu W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062119. PubMed ID: 25019737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficiency at Maximum Power of Irreversible Engines with Asymmetric Nonlinear Flux-Force Relations.
    Koning J; Indekeu JO
    J Phys Chem B; 2018 Apr; 122(13):3615-3619. PubMed ID: 29425035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-level laser heat engine at optimal performance with ecological function.
    Singh V; Johal RS
    Phys Rev E; 2019 Jul; 100(1-1):012138. PubMed ID: 31499856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite-power performance of quantum heat engines in linear response.
    Liu Q; He J; Ma Y; Wang J
    Phys Rev E; 2019 Jul; 100(1-1):012105. PubMed ID: 31499858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Irreversible entropy production in low- and high-dissipation heat engines and the problem of the Curzon-Ahlborn efficiency.
    Gerstenmaier YC
    Phys Rev E; 2021 Mar; 103(3-1):032141. PubMed ID: 33862798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficiency at maximum power output of linear irreversible Carnot-like heat engines.
    Wang Y; Tu ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011127. PubMed ID: 22400532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From maximum power to a trade-off optimization of low-dissipation heat engines: Influence of control parameters and the role of entropy generation.
    Gonzalez-Ayala J; Calvo Hernández A; Roco JM
    Phys Rev E; 2017 Feb; 95(2-1):022131. PubMed ID: 28297927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Route towards the optimization at given power of thermoelectric heat engines with broken time-reversal symmetry.
    Zhang R; Li QW; Tang FR; Yang XQ; Bai L
    Phys Rev E; 2017 Aug; 96(2-1):022133. PubMed ID: 28950616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quasilinear irreversible thermodynamics of a low-temperature-differential kinematic Stirling heat engine.
    Izumida Y
    Phys Rev E; 2020 Jul; 102(1-1):012142. PubMed ID: 32795077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endoreversible quantum heat engines in the linear response regime.
    Wang H; He J; Wang J
    Phys Rev E; 2017 Jul; 96(1-1):012152. PubMed ID: 29347192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamics of the mesoscopic thermoelectric heat engine beyond the linear-response regime.
    Yamamoto K; Hatano N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042165. PubMed ID: 26565226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Irreversibilities and efficiency at maximum power of heat engines: the illustrative case of a thermoelectric generator.
    Apertet Y; Ouerdane H; Goupil C; Lecoeur P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031116. PubMed ID: 22587047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maximum efficiency of low-dissipation refrigerators at arbitrary cooling power.
    Holubec V; Ye Z
    Phys Rev E; 2020 May; 101(5-1):052124. PubMed ID: 32575339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maximum efficiency of low-dissipation heat pumps at given heating load.
    Ye Z; Holubec V
    Phys Rev E; 2022 Feb; 105(2-1):024139. PubMed ID: 35291093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.