These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
367 related articles for article (PubMed ID: 29448434)
21. Inertial effects of self-propelled particles: From active Brownian to active Langevin motion. Löwen H J Chem Phys; 2020 Jan; 152(4):040901. PubMed ID: 32007042 [TBL] [Abstract][Full Text] [Related]
22. Clustering and heterogeneous dynamics in a kinetic Monte Carlo model of self-propelled hard disks. Levis D; Berthier L Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062301. PubMed ID: 25019770 [TBL] [Abstract][Full Text] [Related]
23. Coexistence of active Brownian disks: van der Waals theory and analytical results. Speck T Phys Rev E; 2021 Jan; 103(1-1):012607. PubMed ID: 33601548 [TBL] [Abstract][Full Text] [Related]
24. Collective behavior of soft self-propelled disks with rotational inertia. De Karmakar S; Chugh A; Ganesh R Sci Rep; 2022 Dec; 12(1):22563. PubMed ID: 36581743 [TBL] [Abstract][Full Text] [Related]
25. Morphology of clusters of attractive dry and wet self-propelled spherical particle suspensions. Alarcón F; Valeriani C; Pagonabarraga I Soft Matter; 2017 Jan; 13(4):814-826. PubMed ID: 28066850 [TBL] [Abstract][Full Text] [Related]
26. Additivity, density fluctuations, and nonequilibrium thermodynamics for active Brownian particles. Chakraborti S; Mishra S; Pradhan P Phys Rev E; 2016 May; 93(5):052606. PubMed ID: 27300950 [TBL] [Abstract][Full Text] [Related]
27. Dynamical clustering interrupts motility-induced phase separation in chiral active Brownian particles. Ma Z; Ni R J Chem Phys; 2022 Jan; 156(2):021102. PubMed ID: 35032980 [TBL] [Abstract][Full Text] [Related]
28. Effect of speed fluctuations on the collective dynamics of active disks. Kailasham R; Khair AS Soft Matter; 2023 Oct; 19(40):7764-7774. PubMed ID: 37791487 [TBL] [Abstract][Full Text] [Related]
30. Reentrant phase separation of a sparse collection of nonreciprocally aligning self-propelled disks. De Karmakar S; Ganesh R Phys Rev E; 2022 Oct; 106(4-1):044607. PubMed ID: 36397508 [TBL] [Abstract][Full Text] [Related]
31. Theory for the dynamics of dense systems of athermal self-propelled particles. Szamel G Phys Rev E; 2016 Jan; 93(1):012603. PubMed ID: 26871118 [TBL] [Abstract][Full Text] [Related]
32. Collective forces in scalar active matter. Speck T Soft Matter; 2020 Mar; 16(11):2652-2663. PubMed ID: 32129416 [TBL] [Abstract][Full Text] [Related]
33. Pair-distribution function of active Brownian spheres in two spatial dimensions: Simulation results and analytic representation. Jeggle J; Stenhammar J; Wittkowski R J Chem Phys; 2020 May; 152(19):194903. PubMed ID: 33687241 [TBL] [Abstract][Full Text] [Related]
34. Application of the extended RSA models in studies of particle deposition at partially covered surfaces. Weroński P Adv Colloid Interface Sci; 2005 Dec; 118(1-3):1-24. PubMed ID: 16084783 [TBL] [Abstract][Full Text] [Related]
35. Athermal phase separation of self-propelled particles with no alignment. Fily Y; Marchetti MC Phys Rev Lett; 2012 Jun; 108(23):235702. PubMed ID: 23003972 [TBL] [Abstract][Full Text] [Related]
36. Active matter in infinite dimensions: Fokker-Planck equation and dynamical mean-field theory at low density. Arnoulx de Pirey T; Manacorda A; van Wijland F; Zamponi F J Chem Phys; 2021 Nov; 155(17):174106. PubMed ID: 34742220 [TBL] [Abstract][Full Text] [Related]
37. Dynamics and thermodynamics of air-driven active spinners. Farhadi S; Machaca S; Aird J; Torres Maldonado BO; Davis S; Arratia PE; Durian DJ Soft Matter; 2018 Jul; 14(27):5588-5594. PubMed ID: 29882572 [TBL] [Abstract][Full Text] [Related]
38. Aggregation and sedimentation of active Brownian particles at constant affinity. Fischer A; Chatterjee A; Speck T J Chem Phys; 2019 Feb; 150(6):064910. PubMed ID: 30769983 [TBL] [Abstract][Full Text] [Related]
39. Transport coefficients in dense active Brownian particle systems: mode-coupling theory and simulation results. Reichert J; Granz LF; Voigtmann T Eur Phys J E Soft Matter; 2021 Mar; 44(3):27. PubMed ID: 33704593 [TBL] [Abstract][Full Text] [Related]