These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 29448446)

  • 21. Collective phase chaos in the dynamics of interacting oscillator ensembles.
    Kuznetsov SP; Pikovsky A; Rosenblum M
    Chaos; 2010 Dec; 20(4):043134. PubMed ID: 21198104
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Approximate solution to the stochastic Kuramoto model.
    Sonnenschein B; Schimansky-Geier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052111. PubMed ID: 24329218
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Collective phase response curves for heterogeneous coupled oscillators.
    Hannay KM; Booth V; Forger DB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022923. PubMed ID: 26382491
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Onset of synchronization in the disordered Hamiltonian mean-field model.
    Restrepo JG; Meiss JD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052125. PubMed ID: 25353757
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimization of noise-induced synchronization of oscillator networks.
    Kawamura Y; Nakao H
    Phys Rev E; 2016 Sep; 94(3-1):032201. PubMed ID: 27739705
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spontaneous synchronization of coupled oscillator systems with frequency adaptation.
    Taylor D; Ott E; Restrepo JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046214. PubMed ID: 20481814
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strong and weak chaos in networks of semiconductor lasers with time-delayed couplings.
    Heiligenthal S; Jüngling T; D'Huys O; Arroyo-Almanza DA; Soriano MC; Fischer I; Kanter I; Kinzel W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012902. PubMed ID: 23944533
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phase chaos in coupled oscillators.
    Popovych OV; Maistrenko YL; Tass PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):065201. PubMed ID: 16089804
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental evidence of deterministic coherence resonance in coupled chaotic systems with frequency mismatch.
    García-Vellisca MA; Pisarchik AN; Jaimes-Reátegui R
    Phys Rev E; 2016 Jul; 94(1-1):012218. PubMed ID: 27575134
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synchronization in a chain of nearest neighbors coupled oscillators with fixed ends.
    El-Nashar HF; Zhang Y; Cerdeira HA; Ibiyinka A F
    Chaos; 2003 Dec; 13(4):1216-25. PubMed ID: 14604412
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Critical behavior and synchronization of discrete stochastic phase-coupled oscillators.
    Wood K; Van den Broeck C; Kawai R; Lindenberg K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):031113. PubMed ID: 17025600
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Network synchronization with periodic coupling.
    Li S; Sun N; Chen L; Wang X
    Phys Rev E; 2018 Jul; 98(1-1):012304. PubMed ID: 30110862
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nature of synchronization transitions in random networks of coupled oscillators.
    Um J; Hong H; Park H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012810. PubMed ID: 24580284
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of disorder on synchronization of discrete phase-coupled oscillators.
    Wood K; Van den Broeck C; Kawai R; Lindenberg K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):041107. PubMed ID: 17500865
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Finite-size scaling, dynamic fluctuations, and hyperscaling relation in the Kuramoto model.
    Hong H; Chaté H; Tang LH; Park H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022122. PubMed ID: 26382359
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dissipative dynamics in a finite chaotic environment: Relationship between damping rate and Lyapunov exponent.
    Xavier JC; Strunz WT; Beims MW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022908. PubMed ID: 26382477
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Finite-size scaling in the system of coupled oscillators with heterogeneity in coupling strength.
    Hong H
    Phys Rev E; 2017 Jul; 96(1-1):012213. PubMed ID: 29347132
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Finite-size scaling in the Kuramoto model.
    Coletta T; Delabays R; Jacquod P
    Phys Rev E; 2017 Apr; 95(4-1):042207. PubMed ID: 28505801
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synchronization in populations of globally coupled oscillators with inertial effects.
    Acebron JA; Bonilla LL; Spigler R
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt A):3437-54. PubMed ID: 11088845
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phase Diffusion in Unequally Noisy Coupled Oscillators.
    Amro RM; Lindner B; Neiman AB
    Phys Rev Lett; 2015 Jul; 115(3):034101. PubMed ID: 26230796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.