These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 29448446)

  • 41. Quasi phase reduction of all-to-all strongly coupled λ-ω oscillators near incoherent states.
    León I; Pazó D
    Phys Rev E; 2020 Oct; 102(4-1):042203. PubMed ID: 33212714
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Finite-size-induced transitions to synchrony in oscillator ensembles with nonlinear global coupling.
    Komarov M; Pikovsky A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):020901. PubMed ID: 26382333
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Persistent fluctuations in synchronization rate in globally coupled oscillators with periodic external forcing.
    Atsumi Y; Nakao H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056207. PubMed ID: 23004843
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Deterministic coherence resonance in coupled chaotic oscillators with frequency mismatch.
    Pisarchik AN; Jaimes-Reátegui R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):050901. PubMed ID: 26651632
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Efficient time-series detection of the strong stochasticity threshold in Fermi-Pasta-Ulam oscillator lattices.
    Romero-Bastida M; Reyes-Martínez AY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 2):016213. PubMed ID: 21405766
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chaos in high-dimensional dissipative dynamical systems.
    Ispolatov I; Madhok V; Allende S; Doebeli M
    Sci Rep; 2015 Jul; 5():12506. PubMed ID: 26224119
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Repulsive synchronization in an array of phase oscillators.
    Tsimring LS; Rulkov NF; Larsen ML; Gabbay M
    Phys Rev Lett; 2005 Jul; 95(1):014101. PubMed ID: 16090619
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synchronized states in a ring of dissipatively coupled harmonic oscillators.
    Moreno JN; Wächtler CW; Eisfeld A
    Phys Rev E; 2024 Jan; 109(1-1):014308. PubMed ID: 38366418
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Collective oscillations in disordered neural networks.
    Olmi S; Livi R; Politi A; Torcini A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046119. PubMed ID: 20481798
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A two-frequency-two-coupling model of coupled oscillators.
    Hong H; Martens EA
    Chaos; 2021 Aug; 31(8):083124. PubMed ID: 34470243
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Theoretical estimates for the largest Lyapunov exponent of many-particle systems.
    Vallejos RO; Anteneodo C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 1):021110. PubMed ID: 12241153
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Weak and strong chaos in Fermi-Pasta-Ulam models and beyond.
    Pettini M; Casetti L; Cerruti-Sola M; Franzosi R; Cohen EG
    Chaos; 2005 Mar; 15(1):15106. PubMed ID: 15836283
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Entrainment transition in populations of random frequency oscillators.
    Hong H; Chaté H; Park H; Tang LH
    Phys Rev Lett; 2007 Nov; 99(18):184101. PubMed ID: 17995410
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Weak chaos and the "melting transition" in a confined microplasma system.
    Antonopoulos C; Basios V; Bountis T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016211. PubMed ID: 20365450
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phase-locked regimes in delay-coupled oscillator networks.
    Punetha N; Prasad A; Ramaswamy R
    Chaos; 2014 Dec; 24(4):043111. PubMed ID: 25554031
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phase synchronization of three locally coupled chaotic electrochemical oscillators: enhanced phase diffusion and identification of indirect coupling.
    Wickramasinghe M; Kiss IZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 2):016210. PubMed ID: 21405763
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synchronization dynamics in diverse ensemble of noisy phase oscillators with asynchronous phase updates.
    Belan S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062910. PubMed ID: 26764777
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Globally coupled stochastic two-state oscillators: fluctuations due to finite numbers.
    Pinto IL; Escaff D; Harbola U; Rosas A; Lindenberg K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052143. PubMed ID: 25353775
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Finite-time and finite-size scaling of the Kuramoto oscillators.
    Lee MJ; Yi SD; Kim BJ
    Phys Rev Lett; 2014 Feb; 112(7):074102. PubMed ID: 24579603
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chaos in Chiral Condensates in Gauge Theories.
    Hashimoto K; Murata K; Yoshida K
    Phys Rev Lett; 2016 Dec; 117(23):231602. PubMed ID: 27982657
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.