These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 29448449)

  • 1. Unsupervised machine learning account of magnetic transitions in the Hubbard model.
    Ch'ng K; Vazquez N; Khatami E
    Phys Rev E; 2018 Jan; 97(1-1):013306. PubMed ID: 29448449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovering phases, phase transitions, and crossovers through unsupervised machine learning: A critical examination.
    Hu W; Singh RRP; Scalettar RT
    Phys Rev E; 2017 Jun; 95(6-1):062122. PubMed ID: 28709189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating Second-Order Phase Transitions with Diagrammatic Monte Carlo: Néel Transition in the Doped Three-Dimensional Hubbard Model.
    Lenihan C; Kim AJ; Šimkovic F; Kozik E
    Phys Rev Lett; 2022 Sep; 129(10):107202. PubMed ID: 36112452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite-size effects in canonical and grand-canonical quantum Monte Carlo simulations for fermions.
    Wang Z; Assaad FF; Parisen Toldin F
    Phys Rev E; 2017 Oct; 96(4-1):042131. PubMed ID: 29347588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite-temperature phase transitions in a two-dimensional boson Hubbard model.
    Cha MC; Lee JW
    Phys Rev Lett; 2007 Jun; 98(26):266406. PubMed ID: 17678114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A cautionary tale for machine learning generated configurations in presence of a conserved quantity.
    Azizi A; Pleimling M
    Sci Rep; 2021 Mar; 11(1):6395. PubMed ID: 33737630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A cold-atom Fermi-Hubbard antiferromagnet.
    Mazurenko A; Chiu CS; Ji G; Parsons MF; Kanász-Nagy M; Schmidt R; Grusdt F; Demler E; Greif D; Greiner M
    Nature; 2017 May; 545(7655):462-466. PubMed ID: 28541324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable recursive auxiliary field quantum Monte Carlo algorithm in the canonical ensemble: Applications to thermometry and the Hubbard model.
    Shen T; Barghathi H; Yu J; Del Maestro A; Rubenstein BM
    Phys Rev E; 2023 May; 107(5-2):055302. PubMed ID: 37329093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ab Initio Finite Temperature Auxiliary Field Quantum Monte Carlo.
    Liu Y; Cho M; Rubenstein B
    J Chem Theory Comput; 2018 Sep; 14(9):4722-4732. PubMed ID: 30102856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unsupervised learning of phase transitions: From principal component analysis to variational autoencoders.
    Wetzel SJ
    Phys Rev E; 2017 Aug; 96(2-1):022140. PubMed ID: 28950564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms.
    Hart RA; Duarte PM; Yang TL; Liu X; Paiva T; Khatami E; Scalettar RT; Trivedi N; Huse DA; Hulet RG
    Nature; 2015 Mar; 519(7542):211-4. PubMed ID: 25707803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antiferromagnetic Ising model in an imaginary magnetic field.
    Azcoiti V; Di Carlo G; Follana E; Royo-Amondarain E
    Phys Rev E; 2017 Sep; 96(3-1):032114. PubMed ID: 29346998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualization and unsupervised predictive clustering of high-dimensional multimodal neuroimaging data.
    Mwangi B; Soares JC; Hasan KM
    J Neurosci Methods; 2014 Oct; 236():19-25. PubMed ID: 25117552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic and superfluid transitions in the one-dimensional spin-1 boson Hubbard model.
    Batrouni GG; Rousseau VG; Scalettar RT
    Phys Rev Lett; 2009 Apr; 102(14):140402. PubMed ID: 19392416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unsupervised machine learning for unbiased chemical classification in X-ray absorption spectroscopy and X-ray emission spectroscopy.
    Tetef S; Govind N; Seidler GT
    Phys Chem Chem Phys; 2021 Oct; 23(41):23586-23601. PubMed ID: 34651631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of Hubbard model physics in WSe
    Tang Y; Li L; Li T; Xu Y; Liu S; Barmak K; Watanabe K; Taniguchi T; MacDonald AH; Shan J; Mak KF
    Nature; 2020 Mar; 579(7799):353-358. PubMed ID: 32188950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase diagram and re-entrant fermionic entanglement in a hybrid Ising-Hubbard ladder.
    Sousa HS; Pereira MSS; de Oliveira IN; Strečka J; Lyra ML
    Phys Rev E; 2018 May; 97(5-1):052115. PubMed ID: 29906985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biexciton Condensation in Electron-Hole-Doped Hubbard Bilayers: A Sign-Problem-Free Quantum Monte Carlo Study.
    Huang XX; Claassen M; Huang EW; Moritz B; Devereaux TP
    Phys Rev Lett; 2020 Feb; 124(7):077601. PubMed ID: 32142325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite temperature auxiliary field quantum Monte Carlo in the canonical ensemble.
    Shen T; Liu Y; Yu Y; Rubenstein BM
    J Chem Phys; 2020 Nov; 153(20):204108. PubMed ID: 33261485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superconducting phase and pairing fluctuations in the half-filled two-dimensional Hubbard model.
    Sentef M; Werner P; Gull E; Kampf AP
    Phys Rev Lett; 2011 Sep; 107(12):126401. PubMed ID: 22026778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.