These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
337 related articles for article (PubMed ID: 29448467)
1. Lattice Boltzmann model for high-order nonlinear partial differential equations. Chai Z; He N; Guo Z; Shi B Phys Rev E; 2018 Jan; 97(1-1):013304. PubMed ID: 29448467 [TBL] [Abstract][Full Text] [Related]
2. Regularized lattice Boltzmann model for a class of convection-diffusion equations. Wang L; Shi B; Chai Z Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):043311. PubMed ID: 26565368 [TBL] [Abstract][Full Text] [Related]
3. Lattice Boltzmann model for generalized nonlinear wave equations. Lai H; Ma C Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046708. PubMed ID: 22181308 [TBL] [Abstract][Full Text] [Related]
4. Revised Chapman-Enskog analysis for a class of forcing schemes in the lattice Boltzmann method. Li Q; Zhou P; Yan HJ Phys Rev E; 2016 Oct; 94(4-1):043313. PubMed ID: 27841508 [TBL] [Abstract][Full Text] [Related]
5. General propagation lattice Boltzmann model for nonlinear advection-diffusion equations. Guo X; Shi B; Chai Z Phys Rev E; 2018 Apr; 97(4-1):043310. PubMed ID: 29758771 [TBL] [Abstract][Full Text] [Related]
6. Numerical method based on the lattice Boltzmann model for the Fisher equation. Yan G; Zhang J; Dong Y Chaos; 2008 Jun; 18(2):023131. PubMed ID: 18601497 [TBL] [Abstract][Full Text] [Related]
7. A Unified Lattice Boltzmann Model for Fourth Order Partial Differential Equations with Variable Coefficients. Yang W; Li C Entropy (Basel); 2022 Aug; 24(9):. PubMed ID: 36141062 [TBL] [Abstract][Full Text] [Related]
8. Comparative study of the lattice Boltzmann models for Allen-Cahn and Cahn-Hilliard equations. Wang HL; Chai ZH; Shi BC; Liang H Phys Rev E; 2016 Sep; 94(3-1):033304. PubMed ID: 27739765 [TBL] [Abstract][Full Text] [Related]
9. Lattice Boltzmann model for nonlinear convection-diffusion equations. Shi B; Guo Z Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):016701. PubMed ID: 19257160 [TBL] [Abstract][Full Text] [Related]
10. Lattice Boltzmann model for the correct convection-diffusion equation with divergence-free velocity field. Huang R; Wu H Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033302. PubMed ID: 25871241 [TBL] [Abstract][Full Text] [Related]
11. Lattice Boltzmann model for the convection-diffusion equation. Chai Z; Zhao TS Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):063309. PubMed ID: 23848808 [TBL] [Abstract][Full Text] [Related]
12. Rectangular multiple-relaxation-time lattice Boltzmann method for the Navier-Stokes and nonlinear convection-diffusion equations: General equilibrium and some important issues. Chai Z; Yuan X; Shi B Phys Rev E; 2023 Jul; 108(1-2):015304. PubMed ID: 37583231 [TBL] [Abstract][Full Text] [Related]
13. Mesoscopic Simulation of the Two-Component System of Coupled Sine-Gordon Equations with Lattice Boltzmann Method. Li D; Lai H; Lin C Entropy (Basel); 2019 May; 21(6):. PubMed ID: 33267256 [TBL] [Abstract][Full Text] [Related]
14. A lattice Boltzmann model for the Burgers-Fisher equation. Zhang J; Yan G Chaos; 2010 Jun; 20(2):023129. PubMed ID: 20590325 [TBL] [Abstract][Full Text] [Related]
15. Mass conservative lattice Boltzmann scheme for a three-dimensional diffuse interface model with Peng-Robinson equation of state. Qiao Z; Yang X; Zhang Y Phys Rev E; 2018 Aug; 98(2-1):023306. PubMed ID: 30253477 [TBL] [Abstract][Full Text] [Related]
16. Lattice Boltzmann model for wave propagation. Zhang J; Yan G; Shi X Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026706. PubMed ID: 19792280 [TBL] [Abstract][Full Text] [Related]
17. Maxwell-Stefan-theory-based lattice Boltzmann model for diffusion in multicomponent mixtures. Chai Z; Guo X; Wang L; Shi B Phys Rev E; 2019 Feb; 99(2-1):023312. PubMed ID: 30934308 [TBL] [Abstract][Full Text] [Related]
18. Theoretical and numerical study of axisymmetric lattice Boltzmann models. Huang H; Lu XY Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 2):016701. PubMed ID: 19658832 [TBL] [Abstract][Full Text] [Related]
19. Effect of the forcing term in the pseudopotential lattice Boltzmann modeling of thermal flows. Li Q; Luo KH Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053022. PubMed ID: 25353895 [TBL] [Abstract][Full Text] [Related]
20. Achieving thermodynamic consistency in a class of free-energy multiphase lattice Boltzmann models. Li Q; Yu Y; Huang RZ Phys Rev E; 2021 Jan; 103(1-1):013304. PubMed ID: 33601620 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]