These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 29448476)

  • 1. Colloidal particle electrorotation in a nonuniform electric field.
    Hu Y; Vlahovska PM; Miksis MJ
    Phys Rev E; 2018 Jan; 97(1-1):013111. PubMed ID: 29448476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrohydrodynamic assembly of colloidal particles on a drop interface.
    Hu Y; Vlahovska PM; Miksis MJ
    Math Biosci Eng; 2021 Mar; 18(3):2357-2371. PubMed ID: 33892549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined AC electroosmosis and dielectrophoresis for controlled rotation of microparticles.
    Walid Rezanoor M; Dutta P
    Biomicrofluidics; 2016 Mar; 10(2):024101. PubMed ID: 27014394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrorotation of colloidal particles in liquid crystals.
    Liao G; Smalyukh II; Kelly JR; Lavrentovich OD; Jákli A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031704. PubMed ID: 16241457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrohydrodynamic interaction of spherical particles under Quincke rotation.
    Das D; Saintillan D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043014. PubMed ID: 23679520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrorotation of particle-coated droplets: from fundamentals to applications.
    Rozynek Z; Banaszak J; Mikkelsen A; Khobaib K; Magdziarz A
    Soft Matter; 2021 Apr; 17(16):4413-4425. PubMed ID: 33908583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quincke rotor dynamics in confinement: rolling and hovering.
    Pradillo GE; Karani H; Vlahovska PM
    Soft Matter; 2019 Aug; 15(32):6564-6570. PubMed ID: 31360980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synchronization and alignment of model oscillators based on Quincke rotation.
    Zhang Z; Bishop KJM
    Phys Rev E; 2023 May; 107(5-1):054603. PubMed ID: 37328991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quincke Oscillations of Colloids at Planar Electrodes.
    Zhang Z; Yuan H; Dou Y; de la Cruz MO; Bishop KJM
    Phys Rev Lett; 2021 Jun; 126(25):258001. PubMed ID: 34241531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling and simulation of dielectrophoretic collective dynamics in a suspension of polarizable particles under the action of a gradient AC electric field.
    Tada S; Shen Y; Qiu Z
    Electrophoresis; 2017 Jun; 38(11):1434-1440. PubMed ID: 28328070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous separation of microparticles by size with direct current-dielectrophoresis.
    Kang KH; Kang Y; Xuan X; Li D
    Electrophoresis; 2006 Feb; 27(3):694-702. PubMed ID: 16385598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dipole interaction of the Quincke rotating particles.
    Dolinsky Y; Elperin T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026608. PubMed ID: 22463350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DC conductivity of a suspension of insulating particles with internal rotation.
    Pannacci N; Lemaire E; Lobry L
    Eur Phys J E Soft Matter; 2009 Apr; 28(4):411-7. PubMed ID: 19337763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size effect in Quincke rotation: a numerical study.
    Peters F; Lobry L; Khayari A; Lemaire E
    J Chem Phys; 2009 May; 130(19):194905. PubMed ID: 19466864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-, two-, and three-dimensional organization of colloidal particles using nonuniform alternating current electric fields.
    Docoslis A; Alexandridis P
    Electrophoresis; 2002 Jul; 23(14):2174-83. PubMed ID: 12210221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupled electrorotation: two proximate microspheres spin in registry with an AC electric field.
    Simpson GJ; Wilson CF; Gericke KH; Zare RN
    Chemphyschem; 2002 May; 3(5):416-23. PubMed ID: 12465501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dielectrophoresis of nanoparticles.
    Kadaksham AT; Singh P; Aubry N
    Electrophoresis; 2004 Nov; 25(21-22):3625-32. PubMed ID: 15565698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrorotation of colloidal particles and cells depends on surface charge.
    Maier H
    Biophys J; 1997 Sep; 73(3):1617-26. PubMed ID: 9284328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vertical motion of a charged colloidal particle near an AC polarized electrode with a nonuniform potential distribution: theory and experimental evidence.
    Fagan JA; Sides PJ; Prieve DC
    Langmuir; 2004 Jun; 20(12):4823-34. PubMed ID: 15984238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the absence of collective motion in a bulk suspension of spontaneously rotating dielectric particles.
    Das D; Saintillan D
    Soft Matter; 2023 Sep; 19(35):6825-6837. PubMed ID: 37655464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.