BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 2944852)

  • 1. Functional Kunitz inhibitor binding domain in plasmin-derived light chain as shown by affinity chromatography.
    Chauvet J; Chabbat J; Acher R
    Int J Pept Protein Res; 1986 Jul; 28(1):85-90. PubMed ID: 2944852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separation of human Glu-plasminogen, Lys-plasminogen and plasmin by high-performance affinity chromatography on Asahipak GS gel coupled with p-aminobenzamidine.
    Ito N; Noguchi K; Kazama M; Shimura K; Kasai K
    J Chromatogr; 1985 Nov; 348(1):199-204. PubMed ID: 2935552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Secondary-site binding of Glu-plasmin, Lys-plasmin and miniplasmin to fibrin.
    Suenson E; Thorsen S
    Biochem J; 1981 Sep; 197(3):619-28. PubMed ID: 6459779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Angiostatin formation involves disulfide bond reduction and proteolysis in kringle 5 of plasmin.
    Stathakis P; Lay AJ; Fitzgerald M; Schlieker C; Matthias LJ; Hogg PJ
    J Biol Chem; 1999 Mar; 274(13):8910-6. PubMed ID: 10085135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping of the human plasmin domain recognized by the unique plasmin receptor of group A streptococci.
    Broder CC; Lottenberg R; Boyle MD
    Infect Immun; 1989 Sep; 57(9):2597-605. PubMed ID: 2547717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrolysis of plasma kallikrein by trypsin and plasmin and the formation of active fragments.
    Sampaio CA; Vidmar S; Hamaguchi A; Sampaio MU
    Adv Exp Med Biol; 1986; 198 Pt B():105-11. PubMed ID: 2949543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and purification of microplasmin.
    Wu HL; Shi GY; Bender ML
    Proc Natl Acad Sci U S A; 1987 Dec; 84(23):8292-5. PubMed ID: 2960974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of the bovine basic pancreatic trypsin inhibitor (Kunitz) to human Glu1-, Lys77-, Val442-, and Val561-plasmin: a comparative study.
    Ascenzi P; Amiconi G; Bolognesi M; Menegatti E; Guarneri M
    Biochim Biophys Acta; 1990 Aug; 1040(1):134-6. PubMed ID: 2143086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-performance affinity chromatography of plasmin and plasminogen on a hydrophilic vinyl-polymer gel coupled with p-aminobenzamidine.
    Shimura K; Kazama M; Kasai K
    J Chromatogr; 1984 Jun; 292(2):369-82. PubMed ID: 6235238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new method of isolation and some properties of the heavy chain of human plasmin.
    Rickli EE; Otavsky WI
    Eur J Biochem; 1975 Nov; 59(2):441-7. PubMed ID: 128454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoaffinity labeling of functionally different lysine-binding sites in human plasminogen and plasmin.
    Ryan TJ; Keegan MC
    Biochim Biophys Acta; 1985 Aug; 830(2):187-94. PubMed ID: 3160389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrodynamic studies on the streptokinase complexes of human plasminogen, Val442-plasminogen, plasmin, and the plasmin-derived light (B) chain.
    Barlow GH; Summaria L; Robbins KC
    Biochemistry; 1984 May; 23(11):2384-7. PubMed ID: 6236844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modifications to the lysine Sepharose method of plasminogen purification which ensure plasmin-free Glu-plasminogen.
    Grant AJ
    Biochem Int; 1990; 20(3):519-27. PubMed ID: 2140680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The isolation and characterization of a ternary human plasmin B-chain-streptokinase-plasminogen complex.
    Summaria L; Boreisha I; Barlow GH; Robbins KC
    Thromb Haemost; 1987 Aug; 58(2):772-7. PubMed ID: 2960030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic peptides derived from the sequence around the plasmin cleavage site in vitronectin. Use in mapping the PAI-1 binding site.
    Gechtman Z; Sharma R; Kreizman T; Fridkin M; Shaltiel S
    FEBS Lett; 1993 Jan; 315(3):293-7. PubMed ID: 7678553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of microplasminogen. A low molecular weight form of plasminogen.
    Shi GY; Wu HL
    J Biol Chem; 1988 Nov; 263(32):17071-5. PubMed ID: 2972717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Covalent molecular weight approximately 92 000 hybrid plasminogen activator derived from human plasmin amino-terminal and urokinase carboxyl-terminal domains.
    Robbins KC; Tanaka Y
    Biochemistry; 1986 Jun; 25(12):3603-11. PubMed ID: 2941075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Interaction of heavy and light chains of plasmin with fibrinogen E and D fragments].
    Kudinov SA; Lezhen TI
    Biokhimiia; 1984 Dec; 49(12):2003-7. PubMed ID: 6240993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Isolation of fibronectin peptide fragments of various sizes and biological activity using affinity chromatography on an immobilized plasmin].
    Chubukina AN; Zlatopol'skiĭ AD; Zaĭdenberg MA; Bychkova VV
    Vopr Med Khim; 1989; 35(6):103-5. PubMed ID: 2534245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for high-molecular weight active peptides originating from porcine plasmin autolysis.
    Grimard M
    Biochimie; 1976; 58(11-12):1409-12. PubMed ID: 138450
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.