BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 29448521)

  • 1. Effect of Ammonium Salts on the Hydrothermal Synthesis of TiO₂ Nanocubes for Dye-Sensitized Solar Cells.
    Lekphet W; Ho SY; Su C; Sireesha P; Kathirvel S; Lin YF; Li WR
    J Nanosci Nanotechnol; 2018 Feb; 18(2):967-975. PubMed ID: 29448521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailored Synthesis of Porous TiO₂ Nanocubes and Nanoparallelepipeds with Exposed {111} Facets and Mesoscopic Void Space: A Superior Candidate for Efficient Dye-Sensitized Solar Cells.
    Amoli V; Bhat S; Maurya A; Banerjee B; Bhaumik A; Sinha AK
    ACS Appl Mater Interfaces; 2015 Dec; 7(47):26022-35. PubMed ID: 26574644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanostructured TiO2 films for dye-sensitized solar cells prepared by the sol-gel method.
    Jin YS; Kim KH; Park SJ; Yoon HH; Choi HW
    J Nanosci Nanotechnol; 2011 Dec; 11(12):10971-5. PubMed ID: 22409037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-step process for the synthesis and deposition of anatase, two-dimensional, disk-shaped TiO₂ for dye-sensitized solar cells.
    Lee CS; Kim JK; Lim JY; Kim JH
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):20842-50. PubMed ID: 25397581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoanode based on chain-shaped anatase TiO2 nanorods for high-efficiency dye-sensitized solar cells.
    Rui Y; Li Y; Wang H; Zhang Q
    Chem Asian J; 2012 Oct; 7(10):2313-20. PubMed ID: 22890917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrothermal fabrication of quasi-one-dimensional single-crystalline anatase TiO2 nanostructures on FTO glass and their applications in dye-sensitized solar cells.
    Liao JY; Lei BX; Wang YF; Liu JM; Su CY; Kuang DB
    Chemistry; 2011 Jan; 17(4):1352-7. PubMed ID: 21243703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on Surface and Crystallinity of TiO₂ Microspheres as the Photoanode of Dye-Sensitized Solar Cells.
    Ma J; Zhao J; Ren W; Tang B
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1977-1982. PubMed ID: 29448695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of brookite TiO
    Xu J; Wu S; Jin J; Peng T
    Nanoscale; 2016 Nov; 8(44):18771-18781. PubMed ID: 27801467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing TiO
    Nakashima K; Hironaka K; Oouchi K; Ajioka M; Kobayashi Y; Yoneda Y; Yin S; Kakihana M; Sekino T
    ACS Omega; 2021 Dec; 6(48):32517-32527. PubMed ID: 34901601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microsphere assembly of TiO2 mesoporous nanosheets with highly exposed (101) facets and application in a light-trapping quasi-solid-state dye-sensitized solar cell.
    Tao X; Ruan P; Zhang X; Sun H; Zhou X
    Nanoscale; 2015 Feb; 7(8):3539-47. PubMed ID: 25631573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile synthesis of GO@SnO
    Mohamed IMA; Dao VD; Yasin AS; Choi HS; Khalil K; Barakat NAM
    J Colloid Interface Sci; 2017 Mar; 490():303-313. PubMed ID: 27914329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of photovoltaic efficiency of dye-sensitized solar cell by introducing highly transparent nanoporous TiO2 buffer layer.
    Kim YJ; Kim HJ; Lee MH; Lim GI; Song HY; Choi YS; Park NG; Lee C; Lee WI
    J Nanosci Nanotechnol; 2010 Jan; 10(1):340-4. PubMed ID: 20352858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of mesoporous anatase TiO2 nanotubes by a hydrothermal treatment and their use in solid-state dye-sensitized solar cells.
    Seo MK; Park SJ
    J Nanosci Nanotechnol; 2011 May; 11(5):4633-8. PubMed ID: 21780512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organic-free Anatase TiO₂ Paste for Efficient Plastic Dye-Sensitized Solar Cells and Low Temperature Processed Perovskite Solar Cells.
    Fu N; Huang C; Liu Y; Li X; Lu W; Zhou L; Peng F; Liu Y; Huang H
    ACS Appl Mater Interfaces; 2015 Sep; 7(34):19431-8. PubMed ID: 26284590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Graphene/TiO₂ Composite Layer on the Performance of Dye-Sensitized Solar Cells.
    Wei L; Chen S; Yang Y; Dong Y; Song W; Fan R
    J Nanosci Nanotechnol; 2018 Feb; 18(2):976-983. PubMed ID: 29448522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dependence of the efficiency improvement of black-dye-based dye-sensitized solar cells on alkyl chain length of quaternary ammonium cations in electrolyte solutions.
    Ozawa H; Okuyama Y; Arakawa H
    Chemphyschem; 2014 Apr; 15(6):1201-6. PubMed ID: 24482147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible, transferable, and thermal-durable dye-sensitized solar cell photoanode consisting of TiO₂ nanoparticles and electrospun TiO₂/SiO₂ nanofibers.
    Wang X; Xi M; Fong H; Zhu Z
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15925-32. PubMed ID: 25162500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. D-sorbitol-induced phase control of TiO2 nanoparticles and its application for dye-sensitized solar cells.
    Shaikh SF; Mane RS; Min BK; Hwang YJ; Joo OS
    Sci Rep; 2016 Feb; 6():20103. PubMed ID: 26857963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Double-sided brush-shaped TiO2 nanostructure assemblies with highly ordered nanowires for dye-sensitized solar cells.
    Zha C; Shen L; Zhang X; Wang Y; Korgel BA; Gupta A; Bao N
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):122-9. PubMed ID: 24354310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical anatase TiO2 porous nanopillars with high crystallinity and controlled length: an effective candidate for dye-sensitized solar-cells.
    Qu Y; Zhou W; Pan K; Tian C; Ren Z; Dong Y; Fu H
    Phys Chem Chem Phys; 2010 Aug; 12(32):9205-12. PubMed ID: 20623065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.